首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Polyesters constitute an important class of materials for in vivo biomedical applications. Poly(?‐caprolactone) (PCL) is a hydrophobic biodegradable polyester which is employed to a lesser extent in drug delivery applications due to its rather limited range of physicochemical characteristics. Here, we present a new paradigm for the synthesis of functionalized PCL via copolymerization of caprolactone with α,ω‐epoxy esters. Ethyl 2‐methyl‐4‐pentenoate oxide was used as a monomer which was copolymerized with ?‐caprolactone to yield random copolymers of poly(?‐caprolactone‐co‐ethyl‐2‐methyl‐4‐pentenoate oxide). The reaction conditions were optimized to generate functionalization greater than 25%. The use of ester‐epoxides favors a statistical and uniform distribution of monomer along the polymer backbone, which while preserving some of the key properties of PCL such as glass transition that is below room temperature, allows the tailoring of the melting behavior of PCL. The strategy presented herein opens up new avenues for engineering PCL properties for biomedical applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3375–3382  相似文献   

2.
Redox‐active polymers enhanced the focus of attention in the field of battery research in recent years. Anthraquinone is one of the most generic redox‐active functional compounds for battery applications, because the quinonide structure undergoes a redox reaction involving two electrons and features stable electrochemical behavior. Although various redox‐active polymers have been developed, the polymer backbone is mostly based on linear alkyl chains [e.g., poly(methacrylate)s, poly(ether)s]. Polymers featuring ring structures in the backbone are limited due to the restricted availability of suitable polymerization techniques [e.g., poly(norbornene)s by ROMP]. The cyclopolymerization of dienes with pendant redox‐active anthraquinone moieties by Pd catalysis represents a novel approach to synthesize redox‐active polymers featuring cyclic structures in the backbone. Electrochemical investigations, in particular cyclic voltammetry, of these new diene monomer, polymers and the corresponding polymer supported carbon paper composites were conducted in different organic electrolytes. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2184–2190  相似文献   

3.
A series of main‐chain poly(amide‐triazole)s were prepared by copper(I)‐catalyzed alkyne–azide AABB‐type copolymerizatons between five structurally similar diacetylenes 1 – 5 with the same diazide 6 . The acetylene units in monomers 1 – 5 possessed different degrees of conformational flexibility due to the different number of intramolecular hydrogen bonds built inside the monomer architecture. Our study showed that the conformational freedom of the monomer had a profound effect on the polymerization efficiency and the thermoreversible gelation properties of the resulting copolymers. Among all five diacetylene monomers, only the one, that is, 1 ‐Py(NH)2 which possesses the pyridine‐2,6‐dicarboxamide unit with two built‐in intramolecular H bonds could produce the corresponding poly(amide‐triazole) Poly‐(PyNH)2 with a significantly higher degree of polymerization (DP) than other monomers with a lesser number of intramolecular H bonds. In addition, it was found that only this polymer exhibited excellent thermoreversible gelation ability in aromatic solvents. A self‐assembling model of the organogelating polymer Poly‐(PyNH)2 was proposed based on FTIR spectroscopy, XRD, and SEM analyses, in which H bonding, π–π aromatic stacking, hydrophobic interactions, and the structural rigidity of the polymer backbone were identified as the main driving forces for the polymer self‐assembly process.  相似文献   

4.
Redox‐active polymers draw significant attention as active material in secondary batteries during the last decade. A new anthraquinone‐based redox‐active monomer was designed, which electrochemical behavior was tailored by mono‐modification of one keto group. The monomer exhibits two one‐electron redox reactions and has a low molar mass, resulting in a high theoretical capacity of 207 mAh/g. The polymerization of the monomer was optimized by variation of solvent and initiator. Moreover, the electrochemical behavior was studied using cyclic voltammetry and the polymer was used as active material in a composite electrode in lithium organic batteries. The polymer reveals a cell potential of 2.3 V and a promising capacity of 137 mAh/g. During the first 100 cycles, the capacity drops to 85% of the initial value. The influence of the charging speed on the charging/discharging properties of the batteries was further investigated. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2517–2523  相似文献   

5.
End‐capped poly(4,5‐dichlorophthalaldehyde) (PCl2PA), which is a new self‐immolative CDr polymer with the unique capability of depolymerizing continuously and completely in the solid state when an end cap is cleaved from the polymer by reaction with a specific molecular signal, is described. End‐capped poly(4,5‐dichlorophthalaldehyde) is sufficiently stable to enable patterning of three‐dimensional macroscopic polymeric materials by selective laser sintering. These unique materials are capable of 1) autonomously amplifying macroscopic changes in the material in response to specific molecular inputs, and 2) altering their responses depending on the identity of the applied signal. Thus, not only does end‐capped PCl2PA provide new and unique capabilities compared to the small subset of existing CDr polymers, but it also provides access to a new class of stimuli‐responsive materials.  相似文献   

6.
The use of aliphatic polyesters for biomedical applications is limited by the lack of functionality of their backbones. The aim of the following study was to develop a novel elastic scaffold material containing functional groups to be used for future derivatization to tether peptide ligands to support cell adhesion, migration, and differentiation. The elastomer was based on three‐arm star copolymers composed of ε‐caprolactone and a functionalized ε‐caprolactone, 2‐oxepane‐1,5‐dione, and end‐terminated with acrylate groups. The elastomer thus contains a ketone and two approaches were examined for obtaining a photocrosslinkable elastomer containing functional groups: crosslinking followed by ketone reduction using sodium borohydride to generate pendant hydroxyl groups, and reaction of the ketone with hydrazines. Reduction of the ketone lead to degradation of the elastomer through transesterification and ethanolate mediated cleavage of the polymer backbone. Reaction with hydrazines did not degrade the polymer and resulted in efficient functionalization of the elastomer. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 8191–8199, 2008  相似文献   

7.
The activated polymerization of 2‐ethynylpyridine by using 2‐thiophenecarbonyl chloride yielded the corresponding conjugated ionic polymer, poly[2‐ethynyl‐N‐(2‐thiophenecarbonyl)pyridinium chloride] (PETCPC). The polymerization proceeded well to give high yield of polymer without any additional initiator or catalyst. The instrumental analysis data on polymer structure indicated that the present ionic polymer have a conjugated polymer backbone system having N‐(2‐thiophenecarbonyl)pyridinium chloride as substituents. The photoluminescence maximum peak of PETCPC was located at 573 nm, which corresponds to the photon energy of 2.16 eV. The aromatic functional substituents in the conjugated backbone system shift PL maximum values because it makes different molecule arrangement. The cyclovoltamograms of PETCPC exhibited the electrochemically stable window at ?1.24 to 1.80 V region. It was found that the kinetics of the redox process of polymer might be controlled by the reactant diffusion process from the experiment of the oxidation current density of polymer versus the scan rate. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6153–6162, 2009  相似文献   

8.
Self‐immolative dendrimers were recently developed and introduced as a potential platform for a single‐triggered multi‐prodrug. These unique structural dendrimers can release all of their tail units through domino‐like chain fragmentation, which is initiated by a single cleavage at the dendrimer core. The incorporation of drug molecules as the tail units and an enzyme substrate as the trigger generates a multi‐prodrug unit that is activated with a single enzymatic cleavage. We have demonstrated several examples of self‐immolative dendritic prodrug systems and have shown significant advantages with respect to the appropriate monomeric prodrug. We anticipate that single‐triggered, dendritic prodrugs will be exploited to further improve selective chemotherapeutic approaches in cancer therapy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1569–1578, 2006  相似文献   

9.
A novel conjugated polythiophene derivative with polymethacrylate attaching to the polymer backbone via an alkyl spacer was successfully synthesized. A methacrylate‐substituted thiophene monomer, 3‐(hexyl methacrylate)thiophene was prepared and polymerized by free radical polymerization, followed by an electrochemical polymerization. The resulting polymer as a yellow‐green‐light emitter, has potential applications in photoelectronics area.  相似文献   

10.
A novel electroactive spirocyclododecylfluorene monomer named 2,7‐bis(carbazol‐9‐yl)‐9,9′‐spiro[cyclododecane‐1,9′‐fluorene] (SFC) was synthesized and electrochemically polymerized to give a very stable multi‐electrochromic polymer (poly‐SFC). Two separate oxidation processes were observed for both SFC monomer and poly‐SFC that carries two carbazole units. The polymeric film of poly‐SFC was coated onto ITO/glass surface, and it shows different colors (transparent, yellowish green, green, and dark green) upon stepwise oxidations. An electrochromic device based on poly‐SFC was assembled in the sandwich cell configuration of ITO/poly‐SFC//gel electrolyte//PEDOT/ITO. Poly‐SFC exhibits 90% of transparency at neutral state and a high contrast ratio (ΔT = 58% at 800 nm). This device constructed from it represents a response time of about 1 s, high coloration efficiency (1377 cm2 C–1) and retained its performance by 96.4% even after 1000 cycles. Exhibiting high transparency at neutral state, reversible redox behavior, resistance to overoxidation, and especially high contrast ratio at near IR region can make poly‐SFC be useful and promising candidate for electrochromic applications despite having a relatively slow response time. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

11.
This work is devoted to the design of a novel family of hydrosoluble biomaterials: poly(N‐vinyl‐2‐pyrrolidone) (PVP)‐based graft copolymers. A synthesis route has been elaborated in which ω‐functionalized PVP is prepared via chain‐transfer radical polymerization, end‐group modified, and subsequently grafted onto a polyhydroxylated backbone, typically dextran or poly(vinyl alcohol). The resulting graft copolymer biomaterials are designed for use in various biomedical applications, particularly as materials with a stronger potential for plasma expansion than already existing products have. The graft copolymers are potentially degradable because the PVP grafts are connected to the polyol backbone via a hydrolytically labile carbonate or ester linkage. The degradation of the graft copolymers was performed in vitro over a period of 6 weeks. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3652–3661, 2002  相似文献   

12.
Oxidative polymerization of bromoiron(III) meso‐tetrakis(3‐thienyl)porphyrin gave a novel polymeric porphyrin complex randomly crosslinked at the 2,5‐positions of the peripheral thienyl groups. The electrical semiconductivity of ca. 10?5 S/cm after I2 doping indicated that the polymer had a π‐conjugated structure with a moderate delocalization of π electrons over the thienylporphyrin units. PM3 calculations for free‐base models revealed that HOCO (the highest occupied crystal orbital) band width was reduced by introduction of the porphyrin moieties into the thienylene backbone and yet low HOCO‐LUCO (the lowest unoccupied crystal orbital) gap was maintained, which accounted for the relatively low electrical conductivity of the porphyrin polymer. The modified electrode prepared by electropolymerization was redox‐active due to the presence of iron(II/III) couple and the semiconductivity of the film, which served as a novel non‐enzymatic electrochemical sensor for superoxide anion radical based on the facile electrocatalytic oxidation of the superoxide. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
A strategy for the conjugation of alcohol‐containing payloads to antibodies has been developed and involves the methylene alkoxy carbamate (MAC) self‐immolative unit. A series of MAC β‐glucuronide model constructs were prepared to evaluate stability and enzymatic release, and the results demonstrated high stability at physiological pH in a substitution‐dependent manner. All the MAC model compounds efficiently released alcohol drug surrogates under the action of β‐glucuronidase. To assess the MAC technology for ADCs, the potent microtubule‐disrupting agent auristatin E (AE) was incorporated through the norephedrine alcohol. Conjugation of the MAC β‐glucuronide AE drug linker to the anti‐CD30 antibody cAC10, and an IgG control antibody, gave potent and immunologically specific activities in vitro and in vivo. These studies validate the MAC self‐immolative unit for alcohol‐containing payloads within ADCs, a class that has not been widely exploited.  相似文献   

14.
A π‐conjugated poly(α‐dithienylen‐dithiafulvene) ( 2 ) was obtained by the oxidation polymerization of 2,6‐bis(2‐thienyl)‐1,4‐dithiafulvene ( 1 ) as a dithiafulvene monomer derived from 4‐(2‐thienyl)‐1,2,3‐thiadiazole. When a solution of 1 in CHCl3 was added to a stirred solution of FeCl3 in CHCl3, only the low‐molecular‐weight product 2 was obtained. The mixture was stirred for 15 h with an N2 flow. The polymerization at higher temperatures resulted in polymers with large insoluble fractions. A higher molecular weight polymer was obtained by the oxidation polymerization of a charge‐transfer complex of 1 with 7,7,8,8‐tetracyanoquinodimethane (compound 3 ). In contrast to 2 , polymer 4 was readily soluble in dimethyl sulfoxide, dimethylformamide, and acetone and partially soluble in tetrahydrofuran and methanol and had a larger molecular weight (peak top molecular weight = 37,000). The conductivity of polymer 4 was 3 orders of magnitude larger than that of polymer 2 . © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6592–6598, 2005  相似文献   

15.
A new self‐healing polymer has been obtained by incorporating a cyclometalated platinum(II) complex Pt(CNN)Cl (CNN = 6‐phenyl‐2,2′‐bipyridyl) into a polydimethylsiloxane (PDMS) backbone. The molecular interactions (a combination of Pt···Pt and π–π interactions) between cyclometalated platinum(II) complexes are strong enough to crosslink the linear PDMS polymer chains into an elastic film. The as prepared polymer can be stretched to over 20 times of its original length. When damaged, the polymer can be healed at room temperature without any healants or external stimuli. Moreover, the self‐healing is insensitive to surface aging. This work represents the first example where the attractive metallophilic inter­actions are utilized to design self‐healing materials. Moreover, our results suggest that the stretchability and self‐healing properties can be obtained simultaneously without any conflict by optimizing the strength of crosslinking interactions.

  相似文献   


16.
Multistep synthesis and electrochemical characterization of an Os complex‐modified redox hydrogel exhibiting a redox potential ≈+30 mV (vs. Ag/AgCl 3 m KCl) is demonstrated. The careful selection of bipyridine‐based ligands bearing N,N‐dimethylamino moieties and an amino‐linker for the covalent attachment to the polymer backbone ensures the formation of a stable redox polymer with an envisaged redox potential close to 0 V. Most importantly, the formation of an octahedral N6‐coordination sphere around the Os central atoms provides improved stability concomitantly with the low formal potential, a low reorganization energy during the Os3+/2+ redox conversion and a negligible impact on oxygen reduction. By wiring a variety of enzymes such as pyrroloquinoline quinone (PQQ)‐dependent glucose dehydrogenase, flavin adenine dinucleotide (FAD)‐dependent glucose dehydrogenase and the FAD‐dependent dehydrogenase domain of cellobiose dehydrogenase, low‐potential glucose biosensors could be obtained with negligible co‐oxidation of common interfering compounds such as uric acid or ascorbic acid. In combination with a bilirubin oxidase‐based biocathode, enzymatic biofuel cells with open‐circuit voltages of up to 0.54 V were obtained.  相似文献   

17.
Supramolecular polymer nanowires have been prepared by using DNA‐templating of 2,5‐(bis‐2‐thienyl)‐pyrrole (TPT) by oxidation with FeCl3 in a mixed aqueous/organic solvent system. Despite the reduced capacity for strong hydrogen bonding in polyTPT compared to other systems, such as polypyrrole, the templating proceeds well. FTIR spectroscopic studies confirm that the resulting material is not a simple mixture and that the two types of polymer interact. This is indicated by shifts in bands associated with both the phosphodiester backbone and the nucleobases. XPS studies further confirm the presence of DNA and TPT, as well as dopant Cl? ions. Molecular dynamics simulations on a [{dA24:dT24}/{TPT}4] model support these findings and indicate a non‐coplanar conformation for oligoTPT over much of the trajectory. AFM studies show that the resulting nanowires typically lie in the 7–8 nm diameter range and exhibit a smooth, continuous, morphology. Studies on the electrical properties of the prepared nanowires by using a combination of scanned conductance microscopy, conductive AFM and variable temperature two‐terminal I–V measurements show, that in contrast to similar DNA/polymer systems, the conductivity is markedly reduced compared to bulk material. The temperature dependence of the conductivity shows a simple Arrhenius behaviour consistent with the hopping models developed for redox polymers.  相似文献   

18.
We report a new series of polyurethane–oligo(phenylenevinylene) (OPV) random copolymers and their self‐assembled nanomaterials such as pores, vesicles, and luminescent spheres. The polymers were synthesized through melt transurethane process by reacting a hydroxyl‐functionalized OPV with diurethane monomer and diol under solvent‐free and nonisocyanate conditions. The amount of OPV was varied up to 50 mol % in the feed to incorporate various amounts of π‐conjugated segments in the polyurethane backbone. The π‐conjugated segmented polymers were subjected to solvent induced self‐organization in THF or THF+water to produce variety of morphologies ranging from pores (500 nm to 1 μm) to spheres (100 nm to 2 μm). Upon shining 370‐nm light, the dark solid nanospheres of the copolymers transformed into blue luminescent nanoballs under fluorescence microscope. The mechanistic aspects of the self‐organization process were studied using solution FTIR and photophysical techniques such as absorption and emission to trace the factors which control the morphology. FTIR studies revealed that the hydrogen bonding plays a significant role in the copolymers with lower amount of OPV units. Time resolved fluorescent decay measurements of copolymers revealed that molecular aggregation via π‐conjugated segments play a major role in the samples with higher OPV content in the random block polymers. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 46: 5897–5915, 2008  相似文献   

19.
Three methyl end‐capped oligo(ethylene glycol) (MOEG) ethers ( 1b‐d ) and a methoxyderivative ( 1a ) of benzofulvene monomer BF3k were synthesized and induced to polymerize spontaneously by solvent removal to obtain soluble π‐stacked polymers bearing densely grafted MOEG side chains (poly‐ 1b – d ) and model polymer poly‐ 1a. The physicochemical features (e.g., solubility, NMR, MALDI‐TOF, and absorption/emission spectra, as well as MWD, conformation plot, and thermal properties) of the synthesized polymers were compared in a structure‐property relationship study. This approach afforded the following evidence. The structure of poly‐ 1a – d is very similar to that of BF3k , suggesting that the polymerization mechanism is not affected by the presence of the electron‐rich methoxy group or bulkier MOEG side chains. However, the latter appear to be capable of affecting the conformational behavior of the polymer backbone. The solubility of poly‐ 1a – d depends on the number of the oligo(ethylene glycol) monomeric units. In particular, poly‐ 1d , featuring a long MOEG side chain (n = 9), shows an amphiphilic character and is soluble in a number of organic solvents, whereas it interacts with water to give isolated macromolecules in equilibrium with nanosized water‐soluble aggregates. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2446–2461, 2010  相似文献   

20.
The utilization of microwave energy in polymer synthesis is a fast growing field of research leading to a more rapid and cleaner polymerization process. In order to synthesize novel optically active monomer 5‐(4‐methyl‐2‐phthalimidylpentanoylamino)isophthalic acid ( 6 ), the reaction of phthalic anhydride with l ‐leucine was carried out in an acetic acid solution and 4‐methyl‐2‐phthalimidylpentanoic acid as an imide acid was obtained in good yield. Then, it was converted to 4‐methyl‐2‐phthalimidylpentanoyl chloride by treatment with thionyl chloride. This acid chloride was reacted with 5‐aminoisophthalic acid and the novel bulky aromatic amide‐imide chiral monomer 6 was obtained in high yield and was characterized with spectroscopy techniques as well as specific rotation and elemental analysis. Polycondensation of monomer 6 with different diisocyanates such as 4,4′‐methylenebis(phenyl isocyanate), toluene‐2,4‐diisocyanate, isophorone diisocyanate, and hexamethylene diisocyanate was performed by two different methods: microwave irradiation and classical heating polymerization techniques in the presence of various catalysts and without a catalyst. The microwave polymerization technique provides a new way for the production of polymers at high rates. The resulting novel optically active polyamides have inherent viscosities in the range of 0.25–0.63 dl/g. They show good thermal stability and are soluble in amide‐type solvents. The obtained polyamides were characterized by FT‐IR, 1H‐NMR spectroscopy, elemental analyses, specific rotation, and thermal analyses methods. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号