首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously reported that ABA‐type triblock copolymers with azobenzene‐containing terminal blocks can be utilized as a light‐induced reworkable adhesive that enables repeatable bonding and debonding on demand. The reworkability was based on the photoisomerization of the azobenzene moiety and concomitant softening and hardening of the azo blocks. Our aim in this study is to investigate the effect of the composition, molecular weight, and block copolymer architectures on the reworkable adhesive properties. For this purpose, we prepared AB diblock, ABA triblock, and 4‐arm (AB)4 star‐block copolymers consisting of polymethacrylates bearing an azobenzene moiety (A block) and 2‐ethylhexyl (B block) side chains and performed adhesion tests by using these block copolymers. As a result, among the ABA block copolymers with varied compositions and molecular weights, the ABA triblock copolymers with an azo block content of about 50 wt % and relatively low molecular weight could achieve an appropriate balance between high adhesion strength and low residual adhesion strength upon UV irradiation. Furthermore, the 4‐arm star‐block structure not only enhances the adhesion strength, but also maintains low residual adhesion strength when exposed to UV irradiation. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 806–813  相似文献   

2.
用自洽平均场理论的谱方法研究了双亲三嵌段共聚物PEO-PPO-PEO的分子量对其在水溶液相行为的影响. 理论预测了各种溶致液晶相的稳定区域. 通过系统地改变聚合物的分子量, 我们给出了各种PEO-PPO-PEO三嵌段共聚物在水溶液中的相图. 此外, 也研究了分子量对自组装结构各组分浓度分布的影响. 发现在给定的温度下, 聚合物的分子量是体系发生相分离的一个重要驱动力. 我们的理论结果与相关的实验很好地符合.  相似文献   

3.
Two dendritic block copolymers with the same contents of PPO and PEO but different branches and blocks were synthesized by anion polymerization. Their aggregation behavior and aggregation morphology were investigated by steady-state fluorescence and transmission electron microscopy. For SD64 copolymer with PPO-PEO diblock branch, it can be proved that only intermolecular aggregates are formed, the aggregation number and aggregation diameter are increased with concentration. Whereas for SD343 dendritic copolymer with PPO-PEO-PPO triblock branch, hydrophobic PPO chains located on the edge of SD343 copolymers can associate within the same polymer chain and also between different polymer chains, so the aggregates were inclined to change from intramolecular micelles to intermolecular clusters with concentration increasing.  相似文献   

4.
Controlled/"living" polymerizations and tandem polymerization methodologies offer enticing opportunities to enchain a wide variety of monomers into new, functional block copolymer materials with unusual physical properties. However, the use of these synthetic methods often introduces nontrivial molecular weight polydispersities, a type of chain length heterogeneity, into one or more of the copolymer blocks. While the self-assembly behavior of monodisperse AB diblock and ABA triblock copolymers is both experimentally and theoretically well understood, the effects of broadening the copolymer molecular weight distribution on block copolymer phase behavior are less well-explored. We report the melt-phase self-assembly behavior of SBS triblock copolymers (S = poly(styrene) and B = poly(1,4-butadiene)) comprised of a broad polydispersity B block (M(w)/M(n) = 1.73-2.00) flanked by relatively narrow dispersity S blocks (M(w)/M(n) = 1.09-1.36), in order to identify the effects of chain length heterogeneity on block copolymer self-assembly. Based on synchrotron small-angle X-ray scattering and transmission electron microscopy analyses of seventeen SBS triblock copolymers with poly(1,4-butadiene) volume fractions 0.27 ≤ f(B) ≤ 0.82, we demonstrate that polydisperse SBS triblock copolymers self-assemble into periodic structures with unexpectedly enhanced stabilities that greatly exceed those of equivalent monodisperse copolymers. The unprecedented stabilities of these polydisperse microphase separated melts are discussed in the context of a complete morphology diagram for this system, which demonstrates that narrow dispersity copolymers are not required for periodic nanoscale assembly.  相似文献   

5.
采用Monte Carlo模拟方法研究了具有相同链长和组分比的不同嵌段序列的AB两嵌段共聚物与ABA三嵌段共聚物在选择性溶剂中形成囊泡的动力学过程. 模拟结果表明, AB两嵌段共聚物囊泡的形成与ABA三嵌段共聚物囊泡的形成的动力学过程不同. 在慢速退火条件下, ABA三嵌段共聚物囊泡是通过亲水链段向胶束的表面和中心扩散而形成的, 而AB两嵌段共聚物囊泡则由片层弯曲闭合而形成. 相对而言, 退火速度对AB两嵌段共聚物囊泡形成的动力学过程没有显著影响, 其改变仅影响亲水链段与疏水链段发生相分离的难易程度. 当退火速度较快时, 亲水链段和疏水链段发生相分离的速度较快且相分离发生在囊泡形成之前; 而当退火速度较慢时亲水链段和疏水链段之间的相分离在囊泡形成之后仍在进行.  相似文献   

6.
Involving supramolecular chemistry in self‐assembling block copolymer systems enables design of complex macromolecular architectures that, in turn, could lead to complex phase behavior. It is an elegant route, as complicated and sensitive synthesis techniques can be avoided. Highly grafted double‐comb diblock copolymers based on symmetric double hydrogen bond accepting poly(4‐vinylpyridine)‐block‐poly(N‐acryloylpiperidine) diblock copolymers and donating 3‐nonadecylphenol amphiphiles are realized and studied systematically by changing the molecular weight of the copolymer. Double perpendicular lamellae‐in‐lamellae are formed in all complexes, independent of the copolymer molecular weight. Temperature‐resolved measurements demonstrate that the supramolecular nature and ability to crystallize are responsible for the formation of such multiblock‐like structures. Because of these driving forces and severe plasticization of the complexes in the liquid crystalline state, this supramolecular approach can be useful for steering self‐assembly of both low‐ and high‐molecular‐weight block copolymer systems.  相似文献   

7.
利用Monte Carlo模拟,对比了相同组成下环形二嵌段共聚物AB和线形三嵌段共聚物ABA在选择性溶剂中的胶束化行为. 结果发现,相同链组成的环形和线形嵌段共聚物的临界胶束浓度(cmc)的差别与A嵌段的比例(fA)及B嵌段间的吸引强度(ε)密切相关. 在fA较小、ε较大的情况下,相应环形嵌段共聚物的cmc值更小;而在fA较大、ε较小的情况下,线形嵌段共聚物的cmc值更小. 为了进一步理解胶束化行为同fA及ε的关系,计算了胶束化过程中熵和势能部分对自由能的贡献. 结果表明,在所研究的fA和ε范围内,环形嵌段共聚物形成胶束时的熵损失更小,因而从熵贡献角度来看,环形嵌段共聚物更易发生胶束化. 而从势能贡献角度来看,当fA较小、ε较大时,环形嵌段共聚物形成胶束时势能有较大程度的降低,对自由能的贡献更大,因而此时环形嵌段共聚物更易发生胶束化. 而当fA较大、ε较小时,线形嵌段共聚物形成胶束时势能有较大程度的降低,对自由能的贡献更大,因而此时线形嵌段共聚物更易发生胶束化. 由此可见,对体系的胶束化自由能进行系统分析,有助于更好地理解环形和线形嵌段共聚物的胶束化行为.  相似文献   

8.
“Block‐random” copolymers—where one or more blocks are themselves random copolymers—offer a flexible modification to the usual block copolymer architecture. For example, in a poly(A)‐poly(A‐ran‐B) diblock consisting of monomer units A and B, the interblock segregation strength can be continuously tuned through the B content of the random block, allowing the design of block copolymers with accessible order‐disorder transitions at arbitrarily high molecular weights. Moreover, the development of controlled radical polymerizations has greatly expanded the palette of accessible monomer units A and B, including units with strongly interacting functional groups. We synthesize a range of copolymers consisting of styrene (S) and acetoxystyrene (AS) units, including copolymers where one block is P(S‐ran‐AS), through nitroxide‐mediated radical polymerization. At sufficiently high molecular weights, near‐symmetric PS‐PAS diblocks show well‐ordered lamellar morphologies, while dilution of the repulsive S‐AS interactions in PS‐P(S‐ran‐AS) diblocks yields a phase‐mixed morphology. Cleavage of a sufficient fraction of the AS units in a phase‐mixed PS‐P(S‐ran‐AS) diblock to hydrogen‐bonding hydroxystyrene (HS) units yields, in turn, a microphase‐separated melt. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47:2106–2113, 2009.  相似文献   

9.
聚芳醚酮与液晶聚酯多嵌段共聚物的合成表征   总被引:1,自引:0,他引:1  
近年来,以热塑性聚合物为基体,热致液晶聚合物(TLCP)作为增强剂的高分子原位复合材料由于其具有优异的机械性能和优良的成型加工性能,已引起各国工作者的普遍关注和极大兴趣.然而由于自聚集和相分离作用的影响,大部分液晶聚合物与通常的热塑性聚合物基体基本不相容或弱相容,这对于提高原位复合材料的力学性能不利.  相似文献   

10.
利用耗散粒子动力学模拟研究了在水溶液中混合不同的线形三嵌段共聚物AxByCz和线形两嵌段共聚物AmBn对多室胶束的形貌多样性的影响.通过改变线形的三嵌段共聚物和两嵌段共聚物的链长来寻找多室胶束的形成条件.由线形三嵌段共聚物和线形两嵌段共聚物的不同混合形成的多室胶束结构是多种多样的,例如"蠕虫状"胶束、"汉堡包"胶束、"球上球"胶束、"核-壳-壳"胶束等等.多室胶束的整体形貌和内部结构的控制都可以从线形三嵌段共聚物和两嵌段共聚物的二元共混得到.为了表征获得的多室胶束结构,我们计算了密度图和成对分布函数图.在此工作中,可以获得和观察到复杂的多室胶束.结果表明,简单地混合线形的三嵌段共聚物和线形的两嵌段共聚物是一个控制多室胶束形貌和结构的有效方法,在工程实验中可以更简单更经济地形成多室胶束结构.因此,在设计新的多室胶束方面,聚合物共混仍然是未来值得更加关注的一个话题.  相似文献   

11.
Dumbbell-shaped ABA triblock copolymers composed of benzyl ether dendrons and polystyrene as the A and B blocks, respectively, were prepared using 2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO) -mediated “living” free-radical polymerization. A new bis-dendritic unimolecular initiator, compound 3, was employed to study the efficiency of ABA triblock formation under standard TEMPO-mediated polymerization conditions. By this design, the central B block of the ABA triblock copolymer was grown into the bis-dendritic unimolecular initiator. The ABA triblock copolymer products were separated from their by-products, AB diblock copolymers, by column chromatography on silica gel. The isolated copolymers were characterized using gel permeation chromatography and proton nuclear magnetic resonance spectroscopy as complimentary techniques. That the dendritic-linear AB diblock copolymer was obtained in a mixture with ABA triblock material indicates that TEMPO-terminated dendron counter-radical 5 is an imperfect mediator of this free-radical polymerization. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3748–3755, 1999  相似文献   

12.
Liquid crystalline triblock copolymers with LC inner block and amorphous outer blocks have been synthesized by “living” anionic polymerization and investigated using DSC, TEM, and small-angle x-ray diffraction. All samples of poly[styrene-block-2-(3-cholesteryloxycarbonyloxy) ethyl methacrylate-block-styrene] (PS-b-PChEMA-b-PS) show liquid crystalline behavior and phase separation between the blocks. Compared to triblock copolymers with PS inner block (PChEMA-b-PS-b-PChEMA) and diblock copolymers (PS-b-PChEMA) the LC block copolymers with PS outer blocks have the same properties. The LC behavior and the morphology do not depend on the block arrangement; they are only influenced by the volume fractions of the blocks. Those samples in which the liquid crystalline subphase is not continuous (spheres) only a nematic phase was found, whereas in all samples with a continuous liquid crystalline subphase, the smectic A phase of the homopolymer was observed. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
Summary: The phase behavior of metallo‐supramolecular block copolymers with bulky counter ions is theoretically studied within the framework of a mean‐field dynamic density functional theory and compared with recent experiments on a polystyrene–poly(ethylene oxide) metallo‐supramolecular diblock copolymer, PS20‐[Ru]‐PEO70, with tetraphenylborate counter ions. The copolymer is modeled as a triblock polyelectrolyte, in which the metal complex is treated as the polyelectrolyte block. The topology and kinetics of the formation of the observed three‐domain lamellar morphology in which the polyelectrolyte blocks and bulky counter ions are located together to form electroneutral complexes, are in good agreement with experimental results. In addition, the model predicts the existence of core–shell morphologies. The agreement with and variations from the experimental phase diagram are discussed in detail.

Morphological transformations in a metallo‐supramolecular block copolymer with bulky counter ions upon increasing the temperature.  相似文献   


14.
Different series of poly(styrene–isoprene) diblock and poly(styrene–isoprene–styrene) triblock copolymers were prepared. In each series, the low molecular weight polystyrene block was kept constant, and the molecular weight of the polyisoprene block varied. The glass transition behavior of these polymers was studied and their glass transition temperatures compared with those of the random copolymers of styrene and isoprene. It is concluded that some low molecular weight styrene-isoprene block copolymers form a single phase. Krause's thermodynamic treatment of phase separation in block copolymers was applied to the data. One arrives at a polystyrene–polyisoprene interaction parameter χ1,2 ≈ 0.1. The experimental and theoretical limitations of this result are discussed.  相似文献   

15.
We demonstrate a fully conjugated donor–acceptor–donor (D–A–D) triblock copolymer, PBDTT–PNDIBT–PBDTT, which contains PBDTT as the donor block and PNDIBT as the acceptor block. The polymer was synthesized by end‐capping each block with a reactive unit, followed by condensation copolymerization between the two blocks. The physical, optical, and electrochemical properties of the polymer were investigated by comparing those of donor‐ and acceptor‐homopolymers (i.e., PBDTT and PNDIBT), which are the oligomeric monomers, and their blends. On using the newly synthesized block copolymer, ambipolar charge transport behavior was observed in the corresponding thin‐film transistor, and the behavior was compared to that of blend film of donor‐ and acceptor‐homopolymers. Owing to the presence of donor and acceptor blocks in a single polymer chain, it was found that the triblock copolymer can store two‐level information; the ability to store this information is one of the most intriguing challenges in memory applications. In this study, we confirmed the potential of the triblock copolymer in achieving distinct two‐stage data storage by utilizing the ambipolar charge trapping phenomenon, which is expected in donor and acceptor containing random and block copolymers in a thin‐film transistor. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3223–3235  相似文献   

16.
嵌段结构对两亲嵌段共聚物水溶液行为的影响   总被引:2,自引:1,他引:2  
在合成了二种具有相同组成不同嵌段结构排布的共聚物基础上对它们溶液的物理化学行为用荧光探针的方法进行了研究,结果表明:由于结构排布的不同其物理化学行为有着较大的差异,三嵌段结构的共聚物较二嵌段者更易于形成胶束体系,而二嵌段共聚物则易于发生凝胶化,对上述结果进行讨论和解释.  相似文献   

17.
Langevin dynamics simulations are performed on linear-dendritic diblock copolymers containing bead-spring, freely jointed chains composed of hydrophobic linear monomers and hydrophilic dendritic monomers. The critical micelle concentration (CMC), micelle size distribution, and shape are examined as a function of dendron generation and architecture. For diblock copolymers with a linear block of fixed length, it is found that the CMC increases with increasing dendron generation. This trend qualitatively agrees with experiments on linear-dendritic diblock and triblock copolymers with hydrophilic dendritic blocks and hydrophobic linear blocks. The flexibility of the dendritic block is altered by varying the number of spacer monomers between branch points in the dendron. When comparing linear-dendritic diblock copolymers with similar molecular weights, it is shown that increasing the number of spacer monomers in the dendron lowers the CMC due to an increase in flexibility of the dendritic block. Analysis on the micellar structure shows that linear-dendritic diblock copolymers pack more densely than what would be expected for a linear-linear diblock copolymer of the same molecular weight.  相似文献   

18.
Well‐defined diblock and triblock copolymers composed of poly(N‐isopropylacrylamide) (PNIPAM) and poly(ethylene oxide) (PEO) were successfully synthesized through the reversible addition–fragmentation chain transfer polymerization of N‐isopropylacrylamide (NIPAM) with PEO capped with one or two dithiobenzoyl groups as a macrotransfer agent. 1H NMR, Fourier transform infrared, and gel permeation chromatography instruments were used to characterize the block copolymers obtained. The results showed that the diblock and triblock copolymers had well‐defined structures and narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight < 1.2), and the molecular weight of the PNIPAM block in the diblock and triblock copolymers could be controlled by the initial molar ratio of NIPAM to dithiobenzoate‐terminated PEO and the NIPAM conversion. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4873–4881, 2004  相似文献   

19.
Summary: Based on a hydrophilic poly(ethylene oxide) macroinitiator (PEOBr), a novel amphiphilic diblock copolymer PEO‐block‐poly(11‐(4‐cyanobiphenyloxy)undecyl) methacrylate) (PEO‐b‐PMA(11CB)) was prepared by atom transfer radical polymerization (ATRP) using CuCl/1,1,4,7,10,10‐hexamethyltriethylenetriamine as a catalyst system. An azobenzene block of poly(11‐[4‐(4‐butylphenylazo)phenoxyl]undecyl methacrylate) was then introduced into the copolymer sequence by a second ATRP to synthesize the corresponding triblock copolymer PEO‐b‐PMA(11CB)‐b‐PMA(11Az). Both of the amphiphilic block copolymers had well‐defined structures and narrow molecular‐weight distributions, and exhibited a smectic liquid‐crystalline phase over a wide temperature range.

The amphiphilic triblock copolymer synthesized here.  相似文献   


20.
This work uses a block copolymer architecture [(A'B)_n A_2]_m to unify the scattering function and spinodal transition of typical AB-type block copolymers. The key roles of block number, junction points and asymmetry ratios of block length are(1) to determine the form factor of each block copolymer at the molecular scale;(2) to affect the entropy loss across the spinodal transition and may result in deflection of spinodal curves. The common features are validated in typical linear and nonlinear block copolymers, including AB diblock, asymmetric A'BA triblock,miktoarm stars of AB_n, A_n B_n,(AB)_n,(A'B)_n A, A'BA_m, and multi-graft combs of(B_n A_2)m and [(A'B)_n A_2]_m. The explicit scattering functions and form factors of various block copolymers can be directly applied in radiation experiments(i.e. neutron or X-ray scattering) to unravel the effect of molecular architecture in solution and microphase separation in disordered melt. The molecular model used in this study is also helpful to guide the chemical synthesis to explore more potentially interesting block copolymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号