首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, a completely integrable (2 + 1)-dimensional KdV6 equation is investigated. The Cole-Hopf transformation method combined with the Hirota’s bilinear sense are used to determine two sets of solutions for this equation. Multiple soliton solutions are formally derived to emphasize its complete integrability. Moreover, multiple singular soliton solutions are also developed for this equation. The resonance relation for this equation does not exist.  相似文献   

2.
In this paper, the new idea of a combination of Lie group method and homoclinic test technique is first proposed to seek non-traveling wave solutions of (2 + 1)-dimensional breaking soliton equation. The system is reduced to some (1 + 1)-dimensional nonlinear equations by applying the Lie group method and solves reduced equation with homoclinic test technique. Based on this idea and with the aid of symbolic computation, some new explicit solutions of similar systems can be obtained.  相似文献   

3.
Starting from the extended tanh-function method based on mapping method, the variable separation solutions of the (2 + 1)-dimensional breaking soliton system are derived. By further studying, we find that these variable separation solutions, which seem independent, actually depend on each other. Based on the derived variable separation solution, chaotic behaviors, i.e. periodic solution with chaotic behavior and chaotic peaked and compact line solitons, are investigated.  相似文献   

4.
Two isospectral problems are constructed with the help of a 6-dimensional Lie algebra. By using the Tu scheme, a (1 + 1)-dimensional expanding integrable couplings of the KdV hierarchy is obtained and the corresponding Hamiltonian structure is established. In addition, the 2-order matrix operators proposed by Tuguizhang are extended to the case where some 4-order matrices are given. Based on the extension, a new hierarchy of 2 + 1 dimensions is obtained by the Hamiltonian operator of the above (1 + 1)-dimensional case and the TAH scheme. The new hierarchy of 2 + 1 dimensions can be reduced to a coupled (2 + 1)-dimensional nonlinear equation and furthermore it can be reduced to the (2 + 1)-dimensional KdV equation which has important physics applications. The Hamiltonian structure for the (2 + 1)-dimensional hierarchy is derived with the aid of an extended trace identity. To the best of our knowledge, generating the (2 + 1)-dimensional equation hierarchies by virtue of the TAH scheme has not been studied in detail except to previous little work by Tu et al.  相似文献   

5.
Using the idea of transformation, some links between (2 + 1)-dimensional nonlinear evolution equations and the ordinary differential equations Painlevé-II equations has been illustrated. The Kadomtsev–Petviashvili (KP) equation, generalized (2 + 1)-dimensional break soliton equation and (2 + 1)-dimensional Boussinesq equation are researched. As a result, some new interesting results about these (2 + 1)-dimensional PDEs have been obtained, such as the exact solutions with arbitrary functions, rich rational solutions and the nontrivial Bäcklund transformations have been derived.  相似文献   

6.
This paper obtains the 1-soliton solution of the nonlinear Schrödinger’s equation in 1 + 2 dimensions for parabolic law nonlinearity. An exact soliton solution is obtained in closed form by the solitary wave ansatze.  相似文献   

7.
In this paper, based on a new intermediate transformation, a variable-coefficient projective Riccati equation method is proposed. Being concise and straightforward, it is applied to a new (2 + 1)-dimensional simplified generalized Broer–Kaup (SGBK) system. As a result, several new families of exact soliton-like solutions are obtained, beyond the travelling wave. When imposing some condition on them, the new exact solitary wave solutions of the (2 + 1)-dimensional SGBK system are given. The method can be applied to other nonlinear evolution equations in mathematical physics.  相似文献   

8.
With the aid of symbolic computation, the new generalized algebraic method is extended to the (1 + 2)-dimensional nonlinear Schrödinger equation (NLSE) with dual-power law nonlinearity for constructing a series of new exact solutions. Because of the dual-power law nonlinearity, the equation cannot be directly dealt with by the method and require some kinds of techniques. By means of two proper transformations, we reduce the NLSE to an ordinary differential equation that is easy to solve and find a rich variety of new exact solutions for the equation, which include soliton solutions, combined soliton solutions, triangular periodic solutions and rational function solutions. Numerical simulations are given for a solitary wave solution to illustrate the time evolution of the solitary creation. Finally, conditional stability of the solution in Lyapunov’s sense is discussed.  相似文献   

9.
In high dimensions there are abundant coherent soliton excitations. From the variable separation solutions for the (2 + 1)-dimensional Broer–Kaup system, three kinds of new localized excitations in this system are obtained. Some interesting novel features of these structures are revealed.  相似文献   

10.
In this paper we consider the positive definite solutions of nonlinear matrix equation X + AXδA = Q, where δ  (0, 1], which appears for the first time in [S.M. El-Sayed, A.C.M. Ran, On an iteration methods for solving a class of nonlinear matrix equations, SIAM J. Matrix Anal. Appl. 23 (2001) 632–645]. The necessary and sufficient conditions for the existence of a solution are derived. An iterative algorithm for obtaining the positive definite solutions of the equation is discussed. The error estimations are found.  相似文献   

11.
The improved tanh function method [Chaos, Solitons & Fractals 2005;24:257] is further improved by constructing new ansatz solution of the considered equation. As its application, the (2 + 1)-dimensional Konopelchenko–Dubrovsky equations are considered and abundant new exact non-travelling wave solutions are obtained.  相似文献   

12.
A general solution including three arbitrary functions is obtained for the (2 + 1)-dimensional high-order Broer–Kaup equation by means of WTC truncation method. From the general solution, doubly periodic wave solutions in terms of the Jacobian elliptic functions with different modulus and folded solitary wave solutions determined by appropriate multiple valued functions are obtained. Some interesting novel features and interaction properties of these exact solutions and coherent localized structures are revealed.  相似文献   

13.
Based on the Pfaffian derivative formula and Hirota bilinear method, the Pfaffian solutions to (3 + 1)-dimensional Jimbo–Miwa equation are obtained under a set of linear partial differential condition. Moreover, we extend the linear partial differential condition and proved that (3 + 1)-dimensional Jimbo–Miwa equation has extended Pfaffian solutions. As examples, special exact two-soliton solution and three-soliton solution are computed and plotted. Our results show that (3 + 1)-dimensional Jimbo–Miwa equation has Pfaffian solutions like BKP equation.  相似文献   

14.
The LCZ soliton hierarchy is presented, and their generalized Hamiltonian structures are deduced. From the compatibility of soliton equations, it is shown that this soliton hierarchy is closely related to the Burger equation, the mKP equation and a new (2 + 1)-dimensional nonlinear evolution equation (NEE). Resorting to the nonlinearization of Lax pairs (NLP), all the resulting NEEs are reduced into integrable Hamiltonian systems of ordinary differential equations (ODEs). As a concrete application, the solutions for NEEs can be derived via solving the corresponding ODEs.  相似文献   

15.
A new generalized AKNS hierarchy is presented starting from a 4 × 4 matrix spectral problem with four potentials. Its generalized bi-Hamiltonian structure is also investigated by using the trace identity. Moreover, the special coupled nonlinear equation, the coupled KdV equation, the KdV equation, the coupled mKdV equation and the mKdV equation are produced from the generalized AKNS hierarchy. Most importantly, a Darboux transformation for the generalized AKNS hierarchy is established with the aid of the gauge transformation between the corresponding 4 × 4 matrix spectral problem, by which multiple soliton solutions of the generalized AKNS hierarchy are obtained. As a reduction, a Darboux transformation of the mKdV equation and its new analytical positon, negaton and complexiton solutions are given.  相似文献   

16.
In this paper, the existence of the bright soliton solution of four variants of the Novikov–Veselov equation with constant and time varying coefficients will be studied. We analyze the solitary wave solutions of the Novikov–Veselov equation in the cases of constant coefficients, time-dependent coefficients and damping term, generalized form, and in 1 + N dimensions with variable coefficients and forcing term. We use the solitary wave ansatz method to derive these solutions. The physical parameters in the soliton solutions are obtained as functions of the dependent coefficients. Parametric conditions for the existence of the exact solutions are given. The solitary wave ansatz method presents a wider applicability for handling nonlinear wave equations.  相似文献   

17.
By means of a so-called generalizing Riccati equation mapping method, Zhu [Zhu S D, Chaos, Solitons & Fractals; 2006. doi:10.1016/j.chaos.2006.10.015] has claimed that abundant new solutions to the (2 + 1)-dimensional Boiti–Leon–Pempinelle (BLP) equation are derived. Based on the derived variable separation solution and by selecting appropriate functions, he has asserted that abundant new non-travelling waves are obtained. We show that the generalizing Riccati equation mapping method is equivalent to the usual mapping approach, and say nothing of the conclusion that many new non-travelling wave solutions have been found.  相似文献   

18.
Using an appropriate reduction method, a quite general new integrable system of equations 2 + 1 dimensions can be derived from the dispersive long-wave equation. Various soliton and dromion solutions are obtaining by selecting some types of solutions appropriately. The interaction between the localized solutions is completely elastic, because they pass through each other and preserve their shapes and velocities, the only change being a phase shift. The arbitrariness of the functions included in the general solution implies that approximate lower dimensional chaotic patterns such as chaotic–chaotic patterns, periodic–chaotic patterns, chaotic line soliton patterns and chaotic dromion patterns can appear in the solution. In a similar way, fractal dromion patterns and stochastic fractal excitations also exist for appropriate choices of the boundary conditions and/or initial conditions.  相似文献   

19.
Variable separation approach, which is a powerful approach in the linear science, has been successfully generalized to the nonlinear science as nonlinear variable separation methods. The (2 + 1)-dimensional modified Korteweg–de Vries (mKdV) equation is hereby investigated, and new variable separation solutions are obtained by the truncated Painlevé expansion method and the extended tanh-function method. By choosing appropriate functions for the solution involving three low-dimensional arbitrary functions, which is derived by the truncated Painlevé expansion method, two kinds of nonlinear phenomena, namely, dromion reconstruction and soliton fission phenomena, are discussed.  相似文献   

20.
In this paper, with the aid of symbolic computation and a general ansätz, we presented a new extended rational expansion method to construct new rational formal exact solutions to nonlinear partial differential equations. In order to illustrate the effectiveness of this method, we apply it to the MKDV-Burgers equation and the (2 + 1)-dimensional dispersive long wave equation, then several new kinds of exact solutions are successfully obtained by using the new ansätz. The method can also be applied to other nonlinear partial differential equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号