首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 504 毫秒
1.
Antibodies (anti-83 and anti-93) against the cellulose synthase complex from A. xylinum ATCC 53582 have been employed to study the evolutionary conservation of this enzyme complex among various A. xylinum strains, selected species of other cellulose- producing bacteria, algae, and vascular plants. Of the 18 A. xylinum strains examined, the 83 Kd polypeptide clearly is detected only in 4 strains while the 93 Kd polypeptide is observed in all 18 strains. Assuming that the revised acsAB gene (Saxena et al., 1994) encoding the 83 and 93 Kd polypeptides as a single polypeptide holds true for all A. xylinum strains, it is proposed that the cellulose synthase is conserved in A. xylinum but with varying degrees of homology. An unknown regulatory mechanism causing the degradation of the 83 Kd polypeptide in response to agitated culturing conditions has been suggested to explain the absence of the 83 Kd polypeptide in most of the Acetobacter strains examined. A. xylinum cellulose synthase appears to be conserved in phylogenetically related Rhizobium and Agrobacterium species, but not in algae and plants.  相似文献   

2.
Escherichia coli 3-Deoxy-D-manno-octulosonate 8-phosphate (KDO8P) synthase catalyzes the condensation reaction between D-arabinose 5-phosphate (A5P) and phosphoenolpyruvate (PEP) to form KDO8P and inorganic phosphate (Pi). This enzyme exists as a tetramer in solution, which is important for catalysis. Two different states of the enzyme were obtained: i) PEP-bound and ii) PEP-unbound. The effect of the substrates and products on the overall structure of KDO8P synthase in both PEP-bound and unbound states was examined using electrospray ionization mass spectrometry. The analysis of our data showed that the complexes of the PEP-unbound enzyme with PEP (or Pi) favored the formation of monomers, while the complexes with A5P (or KDO8P) mainly favored dimers. The PEP-bound enzyme was found to exist in the monomer and dimer with a small amount of the tetramer, whereas the PEP-unbound form primarily exists in the monomer and dimer, and no tetramer was observed, suggesting that the bound PEP have a role in stabilization of the tetrameric structure. Taken together, the results imply that the addition of the substrates or products to the unbound enzyme may alter the subunit-subunit interactions and/or conformational change of the protein at the active site, and this study also demonstrates that the electrospray ionization mass spectrometric method may be a powerful tool in probing the subunit-subunit interactions and/or conformational change of multi-subunit protein upon binding to ligand.  相似文献   

3.
Using the consensus-degenerate hybrid oligonucleotide primer polymerase chain reaction method, 26 new ketoacyl synthase (KS) fragments were isolated from a marine sediment sample in the East China Sea (ECS) and analyzed by construction of a phylogenetic tree. With a digoxigenin-labeled KS gene fragment used as a probe, a partial polyketide synthase (PKS) gene cluster was isolated and identified by hybridization screening of a marine sediment sample metagenome fosmid library constructed for this study. A new acyltransferase (AT) gene was cloned from the PKS gene cluster and heterogeneously expressed as a protein fused to maltose-binding protein (MBP). Ultraviolet spectrophotometry was used to study the binding of the MBP–AT fusion protein and single AT domain to substrates using MBP and bovine serum albumin as control proteins. Binding constants (Ka, per micromolar) were calculated and used to analyze the substrate specificity of the acyltransferase. We concluded that there are many unrevealed new PKS gene clusters in marine sediments in the ECS. The acyltransferase is presumably an acetyltransferase from a new PKS gene cluster.  相似文献   

4.
Pamamycins are macrodiolides of polyketide origin with antibacterial activities. Their biosynthesis has been proposed to utilize succinate as a building block. However, the mechanism of succinate incorporation into a polyketide was unclear. Here, we report identification of a pamamycin biosynthesis gene cluster by aligning genomes of two pamamycin‐producing strains. This unique cluster contains polyketide synthase (PKS) genes encoding seven discrete ketosynthase (KS) enzymes and one acyl‐carrier protein (ACP)‐encoding gene. A cosmid containing the entire set of genes required for pamamycin biosynthesis was successfully expressed in a heterologous host. Genetic and biochemical studies allowed complete delineation of pamamycin biosynthesis. The pathway proceeds through 3‐oxoadipyl‐CoA, a key intermediate in the primary metabolism of the degradation of aromatic compounds. 3‐Oxoadipyl‐CoA could be used as an extender unit in polyketide assembly to facilitate the incorporation of succinate.  相似文献   

5.
In this study, a genetics-based method is used to truncate acetyl-coenzyme A synthase from Clostridium thermoaceticum (ACS), an alpha(2)beta(2) tetrameric 310 kDa bifunctional enzyme. ACS catalyzes the reversible reduction of CO(2) to CO and the synthesis of acetyl-CoA from CO (or CO(2) in the presence of low-potential reductants), CoA, and a methyl group bound to a corrinoid-iron sulfur protein (CoFeSP). ACS contains seven metal-sulfur clusters of four different types called A, B, C, and D. The B, C, and D clusters are located in the 72 kDa beta subunit, while the A-cluster, a Ni-X-Fe(4)S(4) cluster that serves as the active site for acetyl-CoA synthase activity, is located in the 82 kDa alpha subunit. The extent to which the essential properties of the cluster, including catalytic, redox, spectroscopic, and substrate-binding properties, were retained as ACS was progressively truncated was determined. Acetyl-CoA synthase catalytic activity remained when the entire beta subunit was removed, as long as CO, rather than CO(2) and a low-potential reductant, was used as a substrate. Truncating an approximately 30 kDa region from the N-terminus of the alpha subunit yielded a 49 kDa protein that lacked catalytic activity but exhibited A-cluster-like spectroscopic, redox, and CO-binding properties. Further truncation afforded a 23 kDa protein that lacked recognizable A-cluster properties except for UV-vis spectra typical of [Fe(4)S(4)](2+) clusters. Two chimeric proteins were constructed by fusing the gene encoding a ferredoxin from Chromatium vinosum to genes encoding the 49 and 82 kDa fragments of the alpha subunit. The chimeric proteins exhibited EPR signals that were not the simple sum of the signals from the separate proteins, suggesting magnetic interactions between clusters. This study highlights the potential for using genetics to simplify the study of complex multicentered metalloenzymes and to generate new complex metalloenzymes with interesting properties.  相似文献   

6.
Polyhydroxyalkanoate (PHA) synthase from Pseudomonas sp 61-3 (PhaC1(Ps)) is able to synthesize P(3HB-co-3HA), consisting of a 3HB unit and medium-chain-length 3HA units of 6-12 carbon atoms. Expression vectors encoding 76 PhaC1(Ps) mutants with an amino acid replacement at position 130, 325, 477 or 481 were individually introduced into Ralstonia eutropha. The mutant enzyme genes were evaluated in terms of their abilities to synthesize P(3HB-co-3HA) using soybean oil as a carbon source. 20 mutants showed significantly high accumulation levels of PHA exceeding 30 wt.-% and as high as 57 wt.-%. It was found that hydrophobic amino acids at the positions are more likely to enhance accumulation of PHA in R. eutropha.  相似文献   

7.
The biosynthesis of hypusine [Nepsilon-(4-amino-2-hydroxybutyl)-lysine] occurs in the eIF-5A precursor protein through two step posttranslational modification involving deoxyhypusine synthase which catalyzes transfer of the butylamine moiety of spermidine to the epsilon-amino group of a designated lysine residue and subsequent hydroxylation of this intermediate. This enzyme is exclusively required for cell viability and growth of yeast (Park, M.H. et al., J. Biol. Chem. 273: 1677-1683, 1998). In an effort to understand structure-function relationship of deoxyhypusine synthase, posttranslational modification(s) of the enzyme by protein kinases were carried out for a possible cellular modulation of this enzyme. And also twelve deletion mutants were constructed, expressed in E. coli system, and enzyme activities were examined. The results showed that deoxyhypusine synthase was phosphorylated by PKC in vitro but not by p56lck and p60c-src. Treatment with PMA specifically increased the relative phosphorylation of the enzyme supporting PKC was involved. Phosphoamino acid analysis of this enzyme revealed that deoxyhypusine synthase is mostly phosphorylated on serine residue and weakly on threonine. Removal of Met1-Glu10 (deltaMet1-Glu10) residues from amino terminal showed no effect on the catalytic activity but further deletion (deltaMet1-Ser20) caused loss of enzyme activity. The enzyme with internal deletion, deltaGln197-Asn212 (residues not present in the human enzyme) was found to be inactive. Removal of 5 residues from carboxyl terminal, deltaLys383-Asn387, retained only slight activity. These results suggested that deoxyhypusine synthase is substrate for PKC dependent phosphorylation and requires most of the polypeptide chains for enzyme activity except the first 15 residues of N-terminal despite of N- and C-terminal residues of the enzyme consist of variable regions.  相似文献   

8.
9.
Polyketide biosynthesis is catalyzed by polyketide synthase (PKS) and three types of bacterial PKS are known to date. Feeding experiments with isotope-labeled precursors established the polyketide origin of the macrotetrolides, but the labeling pattern cannot be rationalized according to the established PKS paradigm. Genetic analysis of the macrotetrolide biosynthesis unveiled an unprecedented organization for a polyketide gene cluster that features five genes encoding discrete ketoacyl synthase (KS) and four genes encoding discrete ketoreductase (KR) but lacking an acyl carrier protein (ACP). Macrotetrolide biosynthesis is proposed to involve a novel type II PKS that acts directly on acyl CoA substrates, functions noniteratively, and catalyzes both C-C and C-O bond formation. These findings demonstrate once again Nature's versatility in making complex molecules and suggests new strategies for PKS engineering to further expand the scope and diversity of polyketide library. They also should serve as an inspiration in searching for PKS with novel chemistry for combinatorial biosynthesis.  相似文献   

10.
Naturally occurring enzyme homologues often display highly divergent activity with non‐natural substrates. Exploiting this diversity with enzymes engineered for new or altered function, however, is laborious because the engineering must be replicated for each homologue. A small set of mutations of the tryptophan synthase β‐subunit (TrpB) from Pyrococcus furiosus, which mimics the activation afforded by binding of the α‐subunit, was demonstrated to have a similar activating effect in different TrpB homologues with as little as 57 % sequence identity. Kinetic and spectroscopic analyses indicate that the mutations function through the same mechanism: mimicry of α‐subunit binding. From these enzymes, we identified a new TrpB catalyst that displays a remarkably broad activity profile in the synthesis of 5‐substituted tryptophans. This demonstrates that allosteric activation can be recapitulated throughout a protein family to explore natural sequence diversity for desirable biocatalytic transformations.  相似文献   

11.
Cobalamin-dependent methionine synthase (MetH) is an important metalloenzyme responsible for the biosynthesis of methionine. It catalyzes methyl transfer from N(5)-methyl-tetrahydrofolate to homocysteine (Hcy) by using a zinc ion to activate the Hcy substrate. Density functional theory (B3LYP) calculations on the active-site model in gas phase and in a polarized continuum model were performed to study the Zn coordination changes from the substrate-unbound state to the substrate-bound state. The protein effect on the Zn(2+) coordination exchange was further investigated by ONIOM (B3LYP:AMBER)-ME and EE calculations. The Zn(2+)-coordination exchange is found to be highly unfavorable in the gas phase with a high barrier and endothermicity. In the water solution, the reaction becomes exothermic and the reaction barrier is drastically decreased to about 10.0 kcal/mol. A considerable protein effect on the coordination exchange was also found; the reaction is even more exothermic and occurs without barrier. The enzyme was suggested to constrain the zinc coordination sphere in the reactant state (Hcy-unbound state) more than that in the product state (Hcy-bound state), which promotes ligation of the Hcy substrate. Molecular dynamics simulations using molecular mechanics (MM) and PM3/MM potentials suggest a correlation between the flexibility of the Zn(2+)-binding site and regulation of the enzyme function. Directed in silico mutations of selected residues in the active site were also performed. Our studies support a dissociative mechanism starting with the Zn-O(Asn234) bond breaking followed by the Zn-S((Hcy)) bond formation; the proposed associative mechanism for the Zn(2+)-coordination exchange is not supported.  相似文献   

12.
The production of genetically engineered polyketides depends critically on thioesterase activity for product release. In vitro studies with the thioesterase from the erythromycin polyketide synthase (PKS) have demonstrated that the ability of this enzyme to act as a universal decoupler is limited, but stereochemical variation is readily tolerated. Synthetic analogues with all four stereochemical configurations of the natural substrate's 2-methyl-3-hydroxy substitution pattern ( 1 – 4 ; X=p-nitrophenoxy) were substrates for the enzyme.  相似文献   

13.
在化脓性链球菌致热外毒素B(SpeB)活性阳性菌株对数生长末期的细胞培养液中发现1个分子量约为50000的蛋白, 该蛋白随后消失; 用聚丙烯酰胺凝胶电泳(SDS-PAGE)分离, 串联质谱(MS/MS)分析确认该蛋白为链球菌烯醇化酶(Enolase, Eno); 通过基因敲除方法构建eno基因缺失突变株, 研究了Eno蛋白对SpeB活性形成的影响. 结果表明, eno基因的缺失推迟SpeB成熟的时间; 通过Far-Western blot 分析显示, Eno与SpeB之间能发生相互作用. 考虑到化脓性链球菌胞外蛋白通过同一通道分泌, 推测Eno可能参与了SpeB酶原分泌到胞外的过程, 为新发现的SpeB蛋白分子伴侣.  相似文献   

14.
15.
The garlic plant (Allium sativum) alliinase (EC 4.4.1.4), which catalyzes the synthesis of allicin, was purified to homogeneity from bulbs using various steps, including hydrophobic chromatography. Molecular and biochemical studies showed that the enzyme is a dimer of two subunits of MW 51.5 kDa each. ItsK m using synthetic S-allylcysteine sulfoxide (+isomer) as substrate was 1.1 mM, its pH optimum 6.5, and its isoelectric point 6.35. The enzyme is a glycoprotein containing 6% carbohydrate. N-terminal sequences of the intact polypeptide chain as well as of a number of peptides obtained after cyanogen bromide cleavage were obtained. Cloning of the cDNAs encoding alliinase was performed by a two-step strategy. In the first, a cDNA fragment (pAli-1-450 bp) was obtained by PCR using a mixed oligonucleotide primer synthesized according to a 6-amino acid segment near theN- terminal of the intact polypeptide. The second step involved screening of garlic λgt11 and λZAPII cDNA libraries withpAli-1, which yielded two clones; one was nearly full length and the second was full length. These clones exhibited some degree of DNA sequence divergence, especially in their 3′ noncoding regions, suggesting that they were encoded by separate genes. The nearly full length cDNA was fused in frame to a DNA encoding a signal peptide from a wheat gliadin, and expressed inXenopus oocytes. This yielded a 50 kDa protein that interacted with the antibodies against natural bulb alliinase. Northern and Western blot analyses showed that the bulb alliinase was highly expressed in bulbs, whereas a lower expression level was found in leaves, and no expression was detected in roots. Strikingly, the roots exhibited an abundant alliinase activity, suggesting that this tissue expressed a distinct alliinase isozyme with very low homology to the bulb enzyme.  相似文献   

16.
Deoxyhypusine is a modified lysine and formed posttranslationally to be the eukaryotic initiation factor eIF5A by deoxyhypusine synthase, employing spermidine as butylamine donor. Subsequent hydroxylation of this deoxyhypusine-containing intermediate completes the maturation of eIF5A. The previous report showed that deoxyhypusine synthase was phosphorylated by PKC in vivo and the association of deoxyhypusine synthase with PKC in CHO cells was PMA-, and Ca(2+)/phospholipid-dependent. We have extended study on the phosphorylation of deoxyhypusine synthase by protein kinase CK2 in order to define its role on the regulation of eIF5A in the cell. The results showed that deoxyhypusine synthase was phosphorylated by CK2 in vivo as well as in vitro. Endogenous CK2 in HeLa cells and the cell lysate was able to phosphorylate deoxyhypusine synthase and this modification is enhanced or decreased by the addition of CK2 effectors such as polylysine, heparin, and poly(Glu, Tyr) 4:1. Phosphoamino acid analysis of this enzyme revealed that deoxyhypusine synthase is mainly phosphorylated on threonine residue and less intensely on serine. These results suggest that phosphorylation of deoxyhypusine synthase is CK2-dependent cellular event as well as PKC-mediated effect. However, there were no observable changes in enzyme activity between the phosphorylated and unphosphorylated forms of deoxyhypusine synthase. Taken together, besides its established function in hypusine modification involving eIF5A substrate, deoxyhypusine synthase and its phosphorylation modification may have other independent cellular functions because of versatile roles of deoxyhypusine synthase.  相似文献   

17.
Glycogen synthase catalyzes the incorporation of UDP-glucose into glycogen. The activity of the enzyme is usually measured either by a spectrophotometric method or by a radioassay. The first one is not suitable because of the difficulties regarding the use of coupled enzymes in crude extracts, while the second is a time-consuming method involving glycogen isolation and manipulation of radioactivity. We have used a CZE technique as a novel approach to measure glycogen synthase activity. The separations were performed at 22 kV (36 microA) in uncoated capillaries (53 cmx50 microm). Sample injection time was 30 s and nucleotides were monitored at 254 nm. Best resolution was achieved in 20 mM tetraborate buffer, pH 9.2. Curves of absorbance as a function of UDP and UDP-glucose concentration were linear. Enzyme activity in oocyte extracts was linear with respect to time (up to15 min) and enzyme concentration. The K(m app.) for UDP-glucose was 0.87 mM, a value identical to the one reported using the radioassay. CZE enables easy quantitation of compounds, high sensitivity, and automation of the process. Small sample sizes are required, interferences by auxiliary enzymes and manipulation of radioactivity are avoided, and analysis time is significantly diminished.  相似文献   

18.
Production of active human carbonic anhydrase II in E. coli   总被引:1,自引:0,他引:1  
cDNA encoding human carbonic anhydrase II has been isolated and its nucleotide sequence determined. Expression of the isolated carbonic anhydrase gene in Escherichia coli from a plasmid containing the tac promoter yielded an active enzyme at a level of about 1% of total protein.  相似文献   

19.
Pseudomonas putida KT2442 could accumulate medium-chain-length poly(hydroxyalkanoate)s (PHA) consisting of 3-hydroxyhexanoate, 3-hydroxyoctanoate, 3-hydroxydecanoate, and 3-hydroxydodecanoate from a wide range of carbon sources. In this study, the PHA synthase pha operon (phaC1-phaZ-phaC2) was knocked out and the vgb gene encoding vitreoscilla hemoglobin protein (VHb), which could enhance oxygen uptake rate especially at low oxygen concentration, was integrated into the P. putida KT2442 genome to replace the deleted fragment. The resulting mutant P. putida KTOY01 or gene-replaced mutant KTOY02 was used as the host to study PHA synthase properties and PHA production. Different PHA polymerase (PhaC) genes, phaC(Re) from Rastonia eutropha H16, phaC(Ac) from Aeromonas cavie, and phaC2(Ps) from Pseudomonas stutzeri 1317, were expressed in the mutant strains to test the PhaC enzyme substrate specificity. The result showed P. putida KTOY01 or KTOY02 could provide not only mcl PHA monomers but also 3-hydroxybutyrate from fatty acids, which may allow the production of copolyesters poly(3HB-co-mcl 3HA). Plasmid pCJY10 containing phaC2(Ps), phbA, and phbB genes encoding PHA polymerase, beta-ketothiolase, and acetoacetyl-CoA reductase, respectively, were transformed into P. putida KTOY01 and KTOY02. Shake-flask culture showed P. putida KTOY01 or KTOY02 (pCJY10) could accumulate poly(3HB-co-mcl 3HA) from glucose. The above result showed pha operon knockout mutant of P. putida KT2442 was a very useful host of great potential not only for studying PhaC synthase, but also for microbial production of copolyesters poly(3HB-co-mcl 3HA), which is very difficult to obtain.  相似文献   

20.
Prostaglandin D2 synthase (PGDS) (beta-trace protein) is a highly abundant cerebrospinal fluid (CSF) glycoprotein. A number of studies have been performed to determine the potential value of this protein for the diagnosis of various neurological disorders. The measurement of total PGDS levels in CSF has proved marginally useful for this purpose, but promising results were obtained while investigating changes in the posttranslational modifications (PTM) pattern. Using 2-DE analysis, we previously showed that PGDS is differentially expressed in ante- and post mortem CSF samples. In the present study, we examined whether the PGDS isoforms may help to distinguish stroke and neurodegenerative disease patients from healthy subjects. The pattern of PGDS PTM was analyzed in CSF from patients with various neurological disorders (n = 44) using IEF/immunoblotting techniques. Strong alterations of this pattern were detected in patients with different forms of degenerative dementia. These findings are consistent with PGDS being altered in some neurological diseases and provide new opportunities for clinical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号