首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The exchange bias phenomenon has been investigated in multiferroic Eu0.75Y0.25MnO3. The material shows a weak ferromagnetism with cone spin configuration induced by external magnetic field below 30 K. Consequently, the electric polarization coming from the cycloid spin order below 30 K can be suppressed by external magnetic fields. The magnetic hysteresis loops after cooling in a magnetic field exhibit characteristics of exchange bias below the spin glassy freezing temperature (Tg)∼16 K. The exchange bias field, coercivity field, and remanent magnetization increase with increasing cooling magnetic field. The exchange bias effect is ascribed to the frozen uncompensated spins at the antiferromagnetism/weak ferromagnetism interfaces in the spin-glass like phase.  相似文献   

2.
We perform Monte Carlo simulations for an antiferromagnetic/ferromagnetic core/shell nanoparticle with a doubly inverted structure. We investigate the dependence of the exchange bias field and coercivity on the magnetic dilution of the shell-interface and shell part. It is demonstrated that exchange bias and coercivity can exhibit monotonic or non-monotonic behavior depending on the location of the non-magnetic components. Also, temperature dependence of the exchange bias and coercivity of the system are studied for a particular defect concentration value. Our results provide an alternative way for tunning the magnetic properties of doubly inverted nanoparticles.  相似文献   

3.
王松伟  张鑫  姚蓉  饶光辉 《中国物理 B》2016,25(11):117502-117502
Glassy magnetic behavior and exchange bias phenomena are observed in single phase Mn_3O_4 nanoparticles.Dynamics scaling analysis of the ac susceptibility and the Henkel plot indicate that the observed glassy behavior at low temperature can be understood by taking into account the intrinsic behavior of the individual particles consisting of a ferrimagnetic(FIM) core and a spin-glass surface layer.Field-cooled magnetization hysteresis loops display both horizontal and vertical shifts.Dependence of the exchange bias field(H_E) on the cooling field shows an almost undamped feature up to 70 kOe,indicating the stable exchange bias state in Mn_3O_4.H_E increases as the particle size decreases due to the higher surface/volume ratio.The occurrence of the exchange bias can be attributed to the pinning effect of the frozen spin-glass surface layer upon the FIM core.  相似文献   

4.
胡经国 《计算物理》2004,21(2):166-172
讨论了铁磁-反铁磁双层膜中交换偏置和矫顽场随温度变化的关系。在本模型中,温度的依赖性来源于系统态的热激发以及相关磁学参量的温度依赖性。数值结果显示:低温下,交换偏置和矫顽场随温度的升高而减少,但是随着界面的交换耦合的增强或铁磁层各向异性的减少,其交换偏置变得平坦。随着温度的升高,交换偏置减少直至零;而矫顽场却达到峰值后再减为零。这些结果与实验结果定性一致。根据数值计算结果,可以预见软的铁磁层耦合上硬的反铁磁层,在恰当的交换耦合强度下,可构建具有大的交换偏置、小矫顽场;并在某温度区几乎不随温度变化的磁存贮器件.  相似文献   

5.
The effect of thermal treatment in combination with an external magnetic field and/or elastic stress on the magnetic characteristics of amorphous metal alloys of the 2NSR type is studied. The complex behavior of the magnetization and coercivity values in dependence on the length of annealing at temperatures below crystallization is described. It is assumed that the observed changes in the macroscopic magnetic characteristics are associated with the formation of clusters with different degrees of exchange interaction.  相似文献   

6.
Magnetoresistance (MR) measurements are carried out on a Co(8 nm)/CoO(3.5 nm) bilayer in the exchange bias (EB) state prepared by molecular beam epitaxy. With the applied magnetic field parallel to the current, the EB MR curves show an asymmetric behavior about the minimum, in contrast to the symmetric one for non-EB systems. We generalize a well-known analytical expression used for the field dependence of the MR of paramagnets. Our generalization incorporates coercivity and EB in a new phenomenological MR expression. Excellent fits of the latter to the experimental MR data are achieved, showing the way to use MR techniques for the quantitative characterization of EB systems. Furthermore, the temperature dependence of the EB field obtained from MR loops can be described with a power law, which yields a value of 96.6 K for the EB blocking temperature, which is significantly below the Néel temperature of 293 K for bulk CoO.  相似文献   

7.
We observe the negative shift of the magnetic hysteresis loop at 5 K, while the sample is cooled in external magnetic field in case of 30% of Fe substitution in LaMnO3. The negative shift and training effect of the hysteresis loops indicate the phenomenon of exchange bias. The cooling field dependence of the negative shift increases with the cooling field below 7.0 kOe and then, decreases with further increase of cooling field. The temperature dependence of the negative shift of the hysteresis loops exhibits that the negative shift decreases sharply with increasing temperature and vanishes above 20 K. Temperature dependence of dc magnetization and ac susceptibility measurements show a sharp peak (Tp) at 51 K and a shoulder (Tf) around 20 K. The relaxation of magnetization shows the ferromagnetic and glassy magnetic components in the relaxation process, which is in consistent with the cluster-glass compound.  相似文献   

8.
The magnetic properties of layered hydroxylammonium fluorocobaltate (NH(3)OH)(2)CoF(4) were investigated by measuring its dc magnetic susceptibility in zero-field-cooled (ZFC) and field-cooled (FC) regimes, its frequency dependent ac susceptibility, its isothermal magnetization curves after ZFC and FC regimes, and its heat capacity. Effects of pressure and magnetic field on magnetic phase transitions were studied by susceptibility and heat capacity measurements, respectively. The system undergoes a magnetic phase transition from a paramagnetic state to a canted antiferromagnetic state exhibiting a weak ferromagnetic behavior at T(C) = 46.5 K and an antiferromagnetic transition at T(N) = 2.9 K. The most spectacular manifestation of the complex magnetic behavior in this system is a shift of the isothermal magnetization hysteresis loop in a temperature range below 20 K after the FC regime-an exchange bias phenomenon. We investigated the exchange bias as a function of the magnetic field during cooling and as a function of temperature. The observed exchange bias was attributed to the large exchange anisotropy which exists due to the quasi-2D structure of the layered (NH(3)OH)(2)CoF(4) material.  相似文献   

9.
Optimization of thin films of small bandwidth manganite, Pr(1-x)Ca(x)MnO3 (for x = 0.1), and their magnetic properties are investigated. Using different pulsed laser deposition (PLD) conditions, several films were deposited from the stoichiometric target material on SrTiO3 (001) substrate and their thorough structural and magnetic characterizations were carried out using x-ray diffraction, atomic force microscopy, x-ray photoelectron spectroscopy (XPS), SQUID magnetometry and ac susceptibility measurements. A systematic investigation shows that irrespective of the growth temperature (between 550 and 750?°C), all the as-deposited films have twin boundaries and magnetic double phases. Post-annealing in partial or full oxygen pressure removes the extra phase and the twin boundaries. Zero-field-cooled magnetization data show an antiferromagnetic to paramagnetic transition at around 100 K whereas the field-cooled magnetization data exhibit a paramagnetic to ferromagnetic transition close to 120 K. However, depending on the oxygen treatments, the saturation magnetization and Curie temperature of the films change significantly. Redistribution of oxygen vacancies due to annealing treatments leading to a change in ratio of Mn3+ and Mn4+ in the films is observed from XPS measurements. Low temperature (below 100 K) dc magnetization of these films shows metamagnetic transition, high coercivity and irreversibility magnetizations, indicating the presence of a spin-glass phase at low temperature. The frequency dependent shift in spin-glass freezing temperature from ac susceptibility measurement confirms the coexistence of spin-glass and ferromagnetic phases in these samples at low temperature.  相似文献   

10.
We report the temperature and cooling field dependence of the coercivity of exchange biased MnF(2)/Fe bilayers. When the antiferromagnetic surface is in a state of maximum magnetic frustration and the net exchange bias is zero, we observe a strong enhancement of the coercivity, which is proportional to the exchange coupling between the layers. Hence, the coercivity can be tuned in a reproducible and repeatable fashion in the same sample. We propose that a frustrated interface provides local energy minima which effectively pin the propagating domain walls in the ferromagnet, leading to an enhanced coercivity.  相似文献   

11.
The temperature dependence of exchange bias and coercivity in a ferromagnetic layer coupled with an antiferromagnetic layer is discussed. In this model, the temperature dependence comes from the thermal instability of the system states and the temperature modulated relative magnetic parameters. Morever, the thermal fluctuation of orientations of easy axes of antiferromagnetic grains at preparing has been considered. From the present model, the experimental results can be illustrated qualitatively for available magnetic parameters. Based on our discussion, we can conclude that soft ferromagnetic layer coupled by hard antiferromagnetic layer may be very applicable to design magnetic devices. In special exchange coupling, we can get high exchange bias and low coercivity almost independent of temperature for proper temperature ranges.  相似文献   

12.
We used polarized neutron reflectometry to determine the temperature dependence of the magnetization of thin AuFe films with 3% Fe concentration. We performed the measurements in a large magnetic field of 6 T in a temperature range from 295 to 2 K. For the films in the thickness range from 500 to 20 nm we observed a Brillouin-type behavior from 295 K down to 50 K and a constant magnetization of about 0.9 micro(B) per Fe atom below 30 K. However, for the 10 nm thick film we observed a Brillouin-type behavior down to 20 K and a constant magnetization of about 1.3 micro(B) per Fe atom below 20 K. These experiments are the first to show a finite-size effect in the magnetization of single spin-glass films in large magnetic fields. Furthermore, the ability to measure the deviation from the paramagnetic behavior enables us to prove the existence of the spin-glass state where other methods relying on a cusp-type behavior fail.  相似文献   

13.
A model for the temperature dependence of exchange bias and coercivity in epitaxial ferromagnetic (FM)/ antiferromagnetic (AFM) bilayers is developed. In this model, the interface coupling includes two contributions, the direct coupling and the spin-flop coupling. The temperature dependence arises from the thermal disturbance to the system, involved in the thermal fluctuations of magnetization of AFM grains and the temperature modulation of the relevant magnetic parameters. In addition, the randomness of original orientations of easy axes of AFM grains after field cooling is taken into account. A self-consistent calculation scheme is proposed and numerical treatment is carried out. The results show that the temperature dependence of exchange bias and coercivity is closely related to the sizes of AFM grains and the interface exchange coupling constants. Especially, the exchange bias will have a peak and the blocking temperature will increase if the spin-flop coupling plays a role. On the other hand, the original orientation distribution of easy axes of AFM grains will affect exchange bias and coercivity prominently. The prediction has been well supported by experiments.Received: 12 May 2004, Published online: 31 August 2004PACS: 75.30.Et Exchange and superexchange interactions - 75.50.Ee Antiferromagnetics - 75.30.Gw Magnetic anisotropy  相似文献   

14.
Exchange-biased bilayers are widely used in the pinned layers of spintronic devices. While magnetic field annealing (MFA) was routinely engaged during the fabrication of these devices, the annealing effect of NiO/CoFe bilayers is not yet reported. In this paper, the transition from NiO/Co90Fe10 bilayer to nanocomposite single layer was observed through rapid thermal annealing at different temperatures under magnetic field. The as-deposited and low-temperature (<623 K) annealed samples had rock salt (NiO) and face center cubic (Co90Fe10) structures. On the other hand, annealing at 623 K and 673 K resulted in nanocomposite single layers composed of oxides (matrix) and alloys (precipitate), due to grain boundary oxidization and strong interdiffusion in the NiO/CoFe and CoFe/SiO2 interfaces. The structural transition was accompanied by the reduction of grain sizes, re-ordering of crystallites, incensement of roughness, and reduction of Ni2+. When measured at room temperature, the bilayers exhibited soft magnetism with small room-temperature coercivity. The nanocomposite layers exhibited an enhanced coercivity due to the changes in the magnetization reversal mechanism by pinning from the oxides. At 10 K, the increased antiferromagnetic anisotropy in the NiO resulted in enhanced coercivity and exchange bias in the bilayers. The nanocomposites exhibited weaker exchange bias compared with the bilayers due to frustrated interfacial spins. This investigation on how the magnetic properties of exchange-biased bilayers are influenced by magnetic RTA provides insights into controlling the magnetization reversal properties of thin films.  相似文献   

15.
李永超  周航  潘丹峰  张浩  万建国 《物理学报》2015,64(9):97701-097701
本文采用溶胶-凝胶工艺并结合脉冲激光沉积技术, 在Pt/Ti/SiO2/Si衬底上制备了Co/Co3O4/PZT多铁复合薄膜. 对复合薄膜的微结构和组分进行了表征, 并系统研究了复合薄膜中的交换偏置效应及其对磁电耦合作用的影响. 研究结果表明, 复合薄膜在77 K具有明显的交换偏置效应, 交换偏置场达到80 Oe, 且交换偏置场及矫顽场均随温度降低而增大. 当温度降低到10 K时, 交换偏置场增至160 Oe. X射线光电子能谱(XPS)测试结果证实在Co和Co3O4界面处存在约5 nm厚的CoO层, 表明77 K下的交换偏置效应源自反铁磁的CoO层对Co的钉扎作用. 观察到复合薄膜的电容-温度曲线随着外加磁场大小和方向的改变而呈现出规律性的变化, 表明复合薄膜存在磁电耦合效应. 进一步研究发现, 在低温下复合薄膜呈现出各向异性的磁电容效应, 与磁场大小和方向密切相关. 复合薄膜的这种磁电耦合特性主要与复合体系的交换偏置效应及基于界面应力传递的磁电耦合作用有关, 本文对其中的物理机理进行了详细讨论与分析.  相似文献   

16.
The evolutions of magnetic properties at low temperatures and the influence of magnetic field on the temperature dependence of specific heat in martensitic Ni2Mn1.4Sn0.6 Heusler alloy are studied. The frequency-dependent blocking temperature and considerable exchange bias below it are measured in the martensitic phase. From the analysis of the specific heat curves under magnetic field, a large inverse magnetocaloric effect manifested as the magnetic field induced rise of isothermal magnetic entropy and/or magnetic field induced adiabatic temperature decrease in the vicinity of the reverse magnetostructural transformation and a significant value of the conventional magnetocaloric effect at the Curie temperature are obtained. The Debye temperature and electronic coefficient equal to ΘD=310±2 K and γ= 16.6±0.3 mJ/K2mol, respectively, do not depend on the magnetic field.  相似文献   

17.
提出了一个讨论铁磁/反铁磁双层膜中的交换偏置及矫顽场温度特性的物理模型,该模型,假设铁磁层为具有单畴各向异性的单畴膜而反铁磁层由许多相互独立具有多晶各向异性的颗粒组成,其温度依赖性主要来源于系统态的热不稳定,包括反铁磁颗粒易轴取向的热涨落和相关磁学量的温度依赖性等。计算结果表明其交换偏置随温度的增加非线性地减少而其矫顽场在体阻截温度处达极大值,且其体阻截温度随反铁磁颗粒粒径的增加而增加。我们的计算结果和相关实验结果一致,通过本的讨论,我们建议通过铁磁膜耦合上大粒径硬反铁磁颗粒膜可获得高交换偏置、低矫顽场且近独立于温度的相关磁学器件。  相似文献   

18.
The structural and magnetic properties of NiFe/Co-oxide bilayers were studied. XRD investigation indicates the NiFe (Permalloy) layers (a= 3.53 Å) grow with a (111) preferred orientation. The Co-oxide layers were fabricated with oxygen content in the deposition assist beam ranging from 8% (rock-salt CoO, a= 4.27 Å) to 34% (spinel Co3O4, a= 8.21 Å). Both the coercivity Hc and exchange bias field Hex closely follow an inverse NiFe thickness relationship. A strong temperature dependence of Hc and Hex is found in these NiFe/Co-oxide bilayers. At T= 289 K, the NiFe/CoO film exhibits an enhanced Hc relative to pure NiFe/Co or NiFe/Co3O4 bilayers, an indication of exchange coupling between the NiFe and CoO phases. At T= 10 K, the NiFe/Co3O4 film exhibits an exchange-bias loop shift of Hex∼- 200 Oe that persists to temperatures greater than 30 K (the Néel temperature of bulk Co3O4). The transition temperature of the Co3O4 film component has increased above the bulk value via exchange coupling with the permalloy. Results indicate that the exchange coupling interaction between FM and AFM layers are responsible for both enhanced coercivity and cross-tie domains.  相似文献   

19.
The Pd1?x Fe x )0.95Mn0.05 alloy with random competing interaction was studied by measuring the muon spin relaxation in an external transverse magnetic field and in a zero magnetic field. Using the measured temperature dependence of the dynamic relaxation rate λ and the characteristics of the distribution of local static fields, the phase states of the sample under study are refined. In particular, it is shown that the ferromagnetic and spin-glass states coexist simultaneously in the sample below 25 K. Combined studies of the sample using the μSR and neutron depolarization methods made it possible to determine the size of magnetic inhomogeneities to be 2–6 μm in the temperature range 5–40 K.  相似文献   

20.
Phase transitions in the three-dimensional diluted Ising antiferromagnet in an applied magnetic field are analyzed numerically. It is found that random magnetic field in a system with spin concentration below a certain threshold induces a crossover from second-order phase transition to first-order transition to a new phase characterized by a spin-glass ground state and metastable energy states at finite temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号