首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We first propose fundamental solutions of wave propagation in dispersive chain subject to a localized initial perturbation in the displacement. Analytical solutions are obtained for both second order nonlinear dispersive chain and homogenous harmonic chain using stationary phase approximation. Solution is also compared with numerical results from molecular dynamics(MD) simulations. Locally dominant phonon modes(k-space) are introduced based on these solutions. These locally defined spatially and temporally varying phonon modes k(x, t) are critical to the concept of the local thermodynamic equilibrium(LTE). Wave propagation accompanying with the nonequilibrium dynamics leads to the excitation of these locally defined phonon modes. It is found that the system energy is gradually redistributed among these excited phonons modes(k-space). This redistribution process is only possible with nonlinear dispersion and requires a finite amount of time to achieve a steady state distribution. This time scale is dependent on the spatial distribution(or frequency content) of the initial perturbation and the dispersion relation. Sharper and more concentrated perturbation leads to a faster energy redistribution and dissipation. This energy redistribution generates localized phonons with various frequencies that can be important for phonon-phonon interaction and energy dissipation in nonlinear systems.Depending on the initial perturbation and temperature, the time scale associated with this energy distribution can be critical for energy dissipation compared to the Umklapp scattering process. Ballistic type of heat transport along the harmonic chain reveals that at any given position, the lowest mode(k = 0) is excited first and gradually expanding to the highest mode(kmax(x, t)), where kmax(x, t) can only asymptotically approach the maximum mode kBof the first Brillouin zone(kmax(x, t) → kB). No energy distributed into modes with kmax(x, t) k kBdemonstrates that the local thermodynamic equilibrium cannot be established in harmonic chain. Energy is shown to be uniformly distributed in all available phonon modes k ≤ kmax(x, t) at any position with heat transfer along the harmonic chain. The energy flux along the chain is shown to be a constant with time and proportional to the sound speed(ballistic transport).Comparison with the Fourier's law leads to a time-dependent thermal conductivity that diverges with time.  相似文献   

2.
通过共蒸镀空穴传输材料TPD和电子传输材料Alq3,在普通双层器件的异质结界面引入了均匀互混层,并研究了互混层的厚度变化对器件光电性能的影响。互混层的引入在一定程度上改善了普通双层器件的异质结界面由于高浓度载流子积聚导致的高电场和界面缺陷对器件主要性能(效率和寿命)的负面影响。我们发现一定厚度的互混层使器件的性能有所提高。  相似文献   

3.
The lifetimes of the Si-H vibrational stretch modes of the H(*)(2) ( 2062 cm(-1)) and HV.VH((110)) ( 2072.5 cm(-1)) defects in crystalline Si are measured directly by transient bleaching spectroscopy from 10 K to room temperature. The interstitial-type defect H(*)(2) has a lifetime of 4.2 ps at 10 K, whereas the lifetime of the vacancy-type complex HV.VH((110)) is 2 orders of magnitude longer, 295 ps. The temperature dependence of the lifetime of H(*)(2) is governed by TA phonons, while HV.VH((110)) is governed by LA phonons. This behavior is attributed to the distinctly different local structure of these defects and the accompanying local vibrational modes.  相似文献   

4.
Density-functional calculations of the phonon spectrum and electron-phonon coupling in MgB (2) are presented. The E(2g) phonons, which involve in-plane B displacements, couple strongly to the p(x,y) electronic bands. The isotropic electron-phonon coupling constant is calculated to be about 0.8. Allowing for different order parameters in different bands, the superconducting lambda in the clean limit is calculated to be significantly larger. The E(2g) phonons are strongly anharmonic, and the nonlinear contribution to the coupling between the E(2g) modes and the p(x,y) bands is significant.  相似文献   

5.
The phonon dynamics of the Sn/Ge(111) interface is studied using high-resolution helium atom scattering and first-principles calculations. At room temperature we observe a phonon softening at the Kmacr; point in the (sqrt[3]xsqrt[3])R30 degrees phase, associated with the stabilization of a (3x3) phase at low temperature. That phonon band is split into three branches in the (3x3) phase. We analyze the character of these phonons and find out that the low- and room-temperature modes are connected via a chaotic motion of the Sn atoms. The system is shown to present an order-disorder transition.  相似文献   

6.
Cao K  Guo GC  He L 《J Phys Condens Matter》2012,24(20):206001
We investigate the electromagnon in magnetoferroelectrics RMn(2)O(5) using combined molecular-spin dynamics simulations. We confirm that the origin of the electromagnon modes observed in the optical spectra is due to the exchange-striction interaction between the magnons and the phonons, and the dielectric step at the magnetic phase transition is due to the appearance of the electromagnon in the low-temperature phase in these materials. The magnetic anisotropy breaks the rotational symmetry of the magnetic structures and, as a result, the electromagnon splits into three modes in RMn(2)O(5). We find that the electromagnon frequencies are very sensitive to the magnetic wavevector along the a direction q(x). Therefore, the electromagnon frequencies of TmMn(2)O(5) (q(x) ~ 0.467) are expected to be much higher than those of other materials of the family, such as R= Tb, Y, Ho, etc (q(x) ~ 0.48). We further calculate the electromagnons in the magnetic field, and find a new mode appearing in the magnetic field. Although the modes' frequencies change significantly under magnetic field, the total static dielectric constant contributed from the electromagnons does not change much in the magnetic field, suggesting that the colossal magnetodielectric effects in these materials may not be caused by the electromagnons.  相似文献   

7.
Ultrafast charge carrier dynamics in graphite has been investigated by time-resolved terahertz spectroscopy. Analysis of the transient dielectric function and model calculations show that more than 90% of the initially deposited excitation energy is transferred to a few strongly coupled lattice vibrations within 500 fs. These hot optical phonons also substantially contribute to the striking increase of the Drude relaxation rate observed during the first picosecond after photoexcitation. The subsequent cooling of the hot phonons yields a lifetime estimate of 7 ps for these modes.  相似文献   

8.

Micro-Raman measurements under hydrostatic pressures up to 6 GPa have been carried out on high-quality La 2 m x Sr x CuO 4 polycrystalline compounds with Sr concentration up to x =0.45. The zz scattering polarization has been investigated, where two strong modes due to La/Sr and the apex oxygen, and (in the low Sr concentrations) the soft mode at ~100 cm m 1 are observed. The frequency of the strong modes increases almost linearly with pressure for the Sr concentrations studied. Modifications in the increment rate d y /d p and the phonon width have been detected depending on the amount of doping. For x =0.45 a considerable increase in the width of both strong phonons with pressure was found, which must reflect a separation into phases, since this concentration is close to the solubility limit. The relative intensity of the strong phonons was investigated in connection with its correlation to the transition temperature.  相似文献   

9.
The phonon pulses initiated by photoexcitation of structures containing Si0.8Ge0.2 double quantum wells under picosecond radiation of a MIRA 900P titanium-sapphire laser (λ = 760 nm) are studied. The propagation of nonequilibrium acoustic phonons is detected with a superconducting bolometer. The recorded bolometer response is found to differ substantially from that observed in photoexcitation of the same structure by nanosecond pulses of a nitrogen laser (λ = 337 nm). The generation of coherent acoustic phonons is suggested as an explanation.  相似文献   

10.
Quantum confinement effects on the longitudinal optical and acoustic phonons in CdS nanocrystals in the strongly confined regime in the polymer matrix Nafion are studied using Raman spectroscopy. The LO-phonon modes show size-dependent asymmetric broadening though the broadening and asymmetry are less than those predicted by the phonon confinement models. Two types of confined acoustic modes corresponding to n=1, l=0 and n=1, l=2 spheroidal vibrations are observed. Softening of the spheroidal modes is observed in the strongly confined regime.  相似文献   

11.
基于理论、实验和仿真相结合的方式,着重研究了金属/介质(MD)薄膜中声子热辐射的空间特性和各向异性。声子是由于晶格振动产生的元激发,是物质的内在属性。尽管声子不易调控,但是声子与其他光学激发的耦合会产生奇异的光学现象。特别是红外到太赫兹范围内的光子与极性介质中的声子强耦合产生表面声子激元(SPhP)。SPhP具有强局域、低损耗等特点,与等离子体(plasmon polaritons)形成互补,使得深亚波长光学成为可能。为了进一步了解声子吸收的内在理论基础,首先通过黄昆方程和超晶格连续介电模型在理论上分析了声子吸收。实验上,主要以SiO2声子作为研究对象,利用等离子体增强化学气相沉积(PECVD)方法,分别在Si/Al(150 nm)薄膜和Si衬底上制备出500 nm厚的SiO2薄膜。基于傅里叶红外光谱仪(FTIR),在垂直入射下得到热辐射光谱,通过热辐射光谱分析,并结合由时域有限差分算法(finite-difference time-domain,FDTD)计算得出的仿真光谱图,对比了MD薄膜结构和非MD薄膜结构中声子的热辐射,发现MD薄膜结构更能够有利于声子和SPhP的激发。根据Berreman效应,纵光学波(LO)声子只在倾斜入射时产生。光谱线没有呈现洛伦兹线型,因此,虽然LO声子在垂直入射时测得的热辐射图中不辐射,但同样影响横光学波(TO)声子辐射谱的线型。另外,利用FTIR对金属(Si/Al)/介质(SiO2薄膜)进行热辐射转角测试,对热辐射转角图分析证明,Si/Al/SiO2薄膜中SiO2声子遵循LST(lyddano-sachs-teller)关系,纵横声子成对出现,且两种声子的空间辐射特性不同。改变偏振,发现在S偏振和P偏振下,声子热辐射呈现不同的模式, 体现出声子的空间各向异性。并且,声子与光子耦合可以激发SPhP,反过来,SPhP可以增强声子的吸收。基于MD结构,能够激发并调控SPhP和声子辐射行为,为红外器件的实现奠定了基础。  相似文献   

12.
Calcium stannate perovskite (CaSnO(3)) has been studied by Raman spectroscopy at two excitation wavelengths (514.5 and 632.8 nm). No phase transition was observed. Rather, the thermal evolution of the Raman lines showed a high degree of harmonicity with small Grüneisen parameters and thermal line broadening following Γ=Acothθ/T, where the quantum temperature θ is determined by the phonon branch without further coupling with other degrees of freedom. The geometrical nature of phonon lines has been identified. High-temperature powder x-ray diffraction measurements provide thermal expansion coefficients of α(x)=13.9 × 10(-6) K(-1), α(y)=2.7 × 10(-6) K(-1), α(z)=14.3 × 10(-6) K(-1). The strongly quasi-harmonic behaviour observed and the lack of any indication of instability with respect to the post-perovskite structure points to the strongly first-order character of the reported perovskite to post-perovskite phase transition in this material, which appears to behave as a very good analogue to MgSiO(3) in the Earth's interior.  相似文献   

13.
测量了在蓝宝石衬底上气相外延生长GaN的拉曼散射谱.除观察到已被确认的两个E2,一个A1(TO)和一个E1(TO)声于振动以外,在734±3cm-1处观察到一个散射峰且从实验上确认其为GaN的纵向光学声子模E1(LO).而且发现其强度与外延层晶体质量密切相关.A1(TO)和高频E2散射峰相对强度变化显示不同生长条件引起的外延层质量的变化.  相似文献   

14.
Raman spectroscopic studies have been performed for ZnS nanoclusters in this study. Cluster size dependent multiphonon properties are reported in detail. A flurry of zone boundary phonons is demonstrated in the scattering process. A strong deformation potential (DP) dominated Raman spectra are reported for cubic ZnS nanocluster of diameter with ∼2.2 nm in size below the quantum confinement. Transverse optic (TO) mode in the multiphonon process shows only even order overtones for 2.2 nm cluster, suggesting the dominance of a two‐phonon process and its integral multiples. The possibility of surface oxidation in the smallest cluster is ruled out as a plausible explanation for the observed even order TO modes which resemble the higher order modes of ZnO. A wave vector‐independence of electron–phonon interaction in quantum dots leads to strong dependence on DP‐related phenomenon. A large DP value for the second‐order process in ZnS than that with respect to the first‐order process is made responsible for the observed phenomenon. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
The problem of estimating the coupling strength between oxygen-breathing phonons and electrons in cuprates is discussed. Some of these modes are found in experiments to be strongly coupled, in particular at low doping concentrations. Standard tools, like local density approximation, give a too small coupling. Many-body techniques compare instead much better with experiments. This suggests that electronic correlation effects play a crucial role in the estimate of the electron-phonon coupling from first principles.  相似文献   

16.
The study reports the observation of radial vibrational modes in ultra‐thin walled anatase TiO2 nanotube powders grown by rapid breakdown anodization technique using resonant Raman spectroscopic study. The as‐grown tubes in the anatase phase are around 2–5 nm in wall thickness, 15–18 nm in diameter and few microns in length. The Eg(ν1,ν5,ν6) phonon modes with molecular vibrations in the radial direction are predominant in the resonance Raman spectroscopy using 325 nm He–Cd excitation. Multi‐phonons including overtones and combinational modes of Eg(ν1,ν5,ν6) are abundantly observed. Fröhlich interaction owing to electron–phonon coupling in the resonance Raman spectroscopy of ultra‐thin wall nanotubes is responsible for the observation of radial vibrational modes. Finite size with large surface energy in these nanotubes energetically favor only one mode, B1g(ν4) with unidirectional molecular vibrations in the parallel configuration out of the three Raman modes with molecular vibration normal to the radial modes. Enhanced specific heat with increasing temperatures in these nanotubes as compared to that reported for nanoparticles of similar diameter may possibly be related to the presence of the prominent radial mode along with other energetic phonon mode. The findings elucidate the understanding of total energy landscape for TiO2 nanotubes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Neutron scattering is used to study the structure and dynamics of Me1 − x (NH4) x SCN (Me = K, Rb) mixed crystals along the concentration section of 0.0 < x < 1.0 at room temperature 10 and 290 K. Phase transitions in Me1 − x (NH4) x SCN mixed crystals are analyzed by neutron powder diffraction. The measured spectra of inelastic incoherent neutron scattering from mixed crystals in a concentration range of 0.0 < x < 1.0 at 10 are transformed into the generalized phonon density of states G(E) in the one-phonon incoherent approximation. Using G(E), we determine the changes in ammonium ion dynamics during phase transitions. Low energy resonance and local translational (two bands) and librational (two bands) modes are observed in the disordered rhombic phase at 10 K. The low energy resonance mode is not found in the ordered monoclinic phase at 10 K, though the local translational mode in the form of two bands and the local librational mode in the form of four bands are present there. The low energy resonance mode appears due to hybridization of the phonon spectrum of the host crystal with rotational tunneling modes of the split librational ground state of the impurity’s molecular ammonium ion.  相似文献   

18.
Electronic collective modes in a semiconductor superlattice structure are studied within the self-consistent field approach. Plasmon and magneto-plasmon dispersion relations are obtained for the cases of strong and weak coupling between layers. The interaction of these collective modes with optical phonons is also investigated.  相似文献   

19.
 采用溶胶凝胶法制备了纳米Ti1-xCexO2系列样品。利用X射线衍射(XRD)、透射电子显微镜(TEM)、高分辨电子显微镜(HRTEM)对纳米Ti1-xCexO2系列样品颗粒尺寸、形貌以及固溶区范围和物相组成进行了研究;同时,采用Rietveld结构精修的方法研究了Ce的不同掺杂量对TiO2晶体结构的影响。实验结果表明,Ce掺杂TiO2能够形成Ti1-xCexO2固溶体,Ti1-xCexO2的固溶区范围在x=0~0.06之间,Ti1-xCexO2的晶粒度为5~10 nm,平均颗粒粒度约35 nm,且粒度均匀。  相似文献   

20.
By using the dielectric continuum model, the side interface optical (SIO) and top interface optical (TIO) phonon modes for a cone-shaped GaAs/AlxGal-xAs quantum dot with a spherical top surface are obtained. It is found that, unlike the TI0 mode which shows the same results as those for spherical GaAs/AlxGal-xAs quantum dots, the SIO phonon frequencies depend on not only the integer l, but also the integer |m| as well as the polar angle α, and the frequency behavior of all the different modes is also strongly dependent on x. It is useful to study the couplings between electrons and phonons for those like this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号