首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Knowledge of the entanglement properties of the wave functions commonly used to describe quantum many-particle systems can enhance our understanding of their correlation structure and provide new insights into quantum phase transitions that are observed experimentally or predicted theoretically. To illustrate this theme, we first examine the bipartite entanglement contained in the wave functions generated by microscopic many-body theory for the transverse Ising model, a system of Pauli spins on a lattice that exhibits an order-disorder magnetic quantum phase transition under variation of the coupling parameter. Results for the single-site entanglement and measures of two-site bipartite entanglement are obtained for optimal wave functions of Jastrow-Hartree type. Second, we address the nature of bipartite and tripartite entanglement of spins in the ground state of the noninteracting Fermi gas, through analysis of its two- and three-fermion reduced density matrices. The presence of genuine tripartite entanglement is established and characterized by implementation of suitable entanglement witnesses and stabilizer operators. We close with a broader discussion of the relationships between the entanglement properties of strongly interacting systems of identical quantum particles and the dynamical and statistical correlations entering their wave functions.  相似文献   

4.
《Physics letters. A》2014,378(18-19):1258-1263
We find that the dynamical phase transition (DPT) in nearest-neighbor bipartite entanglement of time-evolved states of the anisotropic infinite quantum XY spin chain, in a transverse time-dependent magnetic field, can be quantitatively characterized by the dynamics of an information-theoretic quantum correlation measure, namely, quantum work-deficit (QWD). We show that only those nonequilibrium states exhibit entanglement resurrection after death, on changing the field parameter during the DPT, for which the cumulative bipartite QWD is above a threshold. The results point to an interesting inter-relation between two quantum correlation measures that are conceptualized from different perspectives.  相似文献   

5.
Through the Jordan-Wigner transformation, the entanglement entropy and ground state phase diagrams of exactly solvable spin model with alternating and multiple spin exchange interactions are investigated by means of Green's function theory. In the absence of four-spin interactions, the ground state presents plentiful quantum phases due to the multiple spin interactions and magnetic fields. It is shown that the two-site entanglement entropy is a good indicator of quantum phase transition (QPT). In addition, the alternating interactions can destroy the magnetization plateau and wash out the spin-gap of low-lying excitations. However, in the presence of four-spin interactions, apart from the second order QPTs, the system manifests the first order QPT at the tricritical point and an additional new phase called ``spin waves', which is due to the collapse of the continuous tower-like low-lying excitations modulated by the four-spin interactions for large three-spin couplings.  相似文献   

6.
The ground state, magnetization scenario and the local bipartite quantum entanglement of a mixed spin-1/2 Ising–Heisenberg model in a magnetic field on planar lattices formed by identical corner-sharing bipyramidal plaquettes is examined by combining the exact analytical concept of generalized decoration-iteration mapping transformations with Monte Carlo simulations utilizing the Metropolis algorithm. The ground-state phase diagram of the model involves six different phases, namely, the standard ferrimagnetic phase, fully saturated phase, two unique quantum ferrimagnetic phases, and two macroscopically degenerate quantum ferrimagnetic phases with two chiral degrees of freedom of the Heisenberg triangular clusters. The diversity of ground-state spin arrangement is manifested themselves in seven different magnetization scenarios with one, two or three fractional plateaus whose values are determined by the number of corner-sharing plaquettes. The low-temperature values of the concurrence demonstrate that the bipartite quantum entanglement of the Heisenberg spins in quantum ferrimagnetic phases is field independent, but twice as strong if the Heisenberg spin arrangement is unique as it is two-fold degenerate.  相似文献   

7.
The entanglement quantum properties of a spin-1/2 Ising-Heisenberg model on a symmetrical diamond chain were analyzed. Due to the separable nature of the Ising-type exchange interactions between neighboring Heisenberg dimers, calculation of the entanglement can be performed exactly for each individual dimer. Pairwise thermal entanglement was studied in terms of the isotropic Ising-Heisenberg model and analytical expressions for the concurrence (as a measure of bipartite entanglement) were obtained. The effects of external magnetic field H and next-nearest neighbor interaction J(m) between nodal Ising sites were considered. The ground state structure and entanglement properties of the system were studied in a wide range of coupling constant values. Various regimes with different values of ground state entanglement were revealed, depending on the relation between competing interaction strengths. Finally, some novel effects, such as the two-peak behavior of concurrence versus temperature and coexistence of phases with different values of magnetic entanglement, were observed.  相似文献   

8.
Making use of exact results and quantum Monte Carlo data for the entanglement of formation, we show that the ground state of anisotropic two-dimensional S=1/2 antiferromagnets in a uniform field takes the classical-like form of a product state for a particular value and orientation of the field, at which the purely quantum correlations due to entanglement disappear. Analytical expressions for the energy and the form of such states are given, and a novel type of exactly solvable two-dimensional quantum models is therefore singled out. Moreover, we show that the field-induced quantum phase transition present in the models is unambiguously characterized by a cusp minimum in the pairwise-to-global entanglement ratio R, marking the quantum-critical enhancement of multipartite entanglement.  相似文献   

9.
Bipartite entanglement, entanglement spectrum, and Schmidt gap in S=1 bond-alternative antiferromagnetic Heisenberg chain are investigated by the infinite time-evolving block decimation (iTEBD) method. The quantum phase transition (QPT) from the singlet-dimer phase to the Haldane phase can be detected by the singular behavior of bipartite entanglement, the sudden change of the entanglement spectrum, and the completely vanishing of the Schmidt gap. The critical point is determined to be around rc ~- 0.587, and the second-order character of the QPT is verified. Doubly degenerate entanglement spectra of both even and odd bonds are observed in the Haldane phase, by which one can distinguish the Haldane phase from the singlet-dimer phase easily. Nearest-neighbor antiferromagnetic correlations and next-nearest-neighbor ferromagnetic correlations are found in the whole parameter region. At the critical massless point, although exponentially decaying antiferromagnetie correlation is observed, it approaches to a constant value finally. Therefore, long-range correlations exist and the correlation length becomes divergent at the critical point.  相似文献   

10.
The ground state entanglement in an isotropic three-qubit transverse XY chain with energy current is analysed. A quantum phase transition from a no-energy-current phase to energy-current phase is found when the magnetic field changes. It has also been found that the ground state changes in company with the quantum phase transition.  相似文献   

11.
We investigate the quantum phase transition (QPT) and the pairwise thermal entanglement in the three-qubit Heisenberg XXX chain with Dzyaloshinskii--Moriya (DM) interaction under a magnetic field. The ground states of the system exist crossing points, which shows that the system exhibits a QPT. At a given temperature, the entanglement undergoes two sudden changes (platform-like behavior) as the DM interaction or external magnetic field increases. This special property can be used as the entanglement switch, which is also influenced by the temperature. We can modulate the DM interaction or external magnetic field to control the entanglement switch.  相似文献   

12.
We have investigated the quantum phase transition in the ground state of collective Lipkin-Meshkov-Glick model (LMG model) subjected to decoherence due to its interaction, represented by a quantum channel, with an environment. We discuss the behavior of quantum and classical pair wise correlations in the system, with the quantumness of correlations measured by quantum discord (QD), entanglement of formation (EOF), measurement-induced disturbance (MID) and the Clauser-Horne-Shimony-Holt-Bell function (CHSH-Bell function). The time evolution established by system-environment interactions is assumed to be Markovian in nature and the quantum channels studied include the amplitude damping (AD), phase damping (PD), bit-flip (BF), phase-flip (PF), and bit-phase-flip (BPF) channels. One can identify appropriate quantities associated with the dynamics of quantum correlations signifying quantum phase transition in the model. Surprisingly, the CHSH-Bell function is found to detect all the phase transitions, even when quantum and classical correlations are zero for the relevant ground state.  相似文献   

13.
We study the ground state properties of the critical Lipkin-Meshkov-Glick model. Using the Holstein-Primakoff boson representation, and the continuous unitary transformation technique, we compute explicitly the finite-size scaling exponents for the energy gap, the ground state energy, the magnetization, and the spin-spin correlation functions. Finally, we discuss the behavior of the two-spin entanglement in the vicinity of the phase transition.  相似文献   

14.
Entanglement spectrum and quantum phase transitions (QPTs) in S = 1 bond-alternative antiferromagnetic Heisenberg chain with single-ion anisotropy and magnetic field are investigated by the infinite time-evolving block decimation (iTEBD) method. The combined effects of the single-ion anisotropy and magnetic field have been discussed, and a rich ground-state phase diagram is obtained. We find that the single-ion anisotropy is advantageous to the stability of the 1/2 magnetization plateau. Both entanglement entropy and entanglement spectrum, as two model-independent measures, are capable of describing all the QPTs. Especially, doubly degenerate entanglement spectrum on even bond is observed in the 1/2 plateau phase. Besides constant spontaneous magnetization, three magnetization plateaus (M z = 0, 1/2, and 1) are found to have constant entanglement entropy, entanglement spectrum, and nearest-neighbor correlation. In addition, all the QPTs in such a model have been determined to belong to the second-order category.  相似文献   

15.
We study the ground-state and thermal entanglement in the mixed-spin (S,s)=(1,1/2) Heisenberg chain with single-ion anisotropy D using exact diagonalization of small clusters. In this system, a quantum phase transition is revealed to occur at the value D=0, which is the bifurcation point for the global ground state; that is, when the single-ion anisotropy energy is positive, the ground state is unique, whereas when it is negative, the ground state becomes doubly degenerate and the system has the ferrimagnetic long-range order. Using the negativity as a measure of entanglement, we find that a pronounced dip in this quantity, taking place just at the bifurcation point, serves to signal the quantum phase transition. Moreover, we show that the single-ion anisotropy helps to improve the characteristic temperatures above which the quantum behavior disappears.  相似文献   

16.
We develop a general theory of the relation between quantum phase transitions (QPTs) characterized by nonanalyticities in the energy and bipartite entanglement. We derive a functional relation between the matrix elements of two-particle reduced density matrices and the eigenvalues of general two-body Hamiltonians of d-level systems. The ground state energy eigenvalue and its derivatives, whose nonanalyticity characterizes a QPT, are directly tied to bipartite entanglement measures. We show that first-order QPTs are signaled by density matrix elements themselves and second-order QPTs by the first derivative of density matrix elements. Our general conclusions are illustrated via several quantum spin models.  相似文献   

17.
Effects of a charged impurity on the ground state of two vertically coupled identical single-electron quantum dots with and without applied magnetic field are investigated. In the absence of the magnetic field, the investigations of the charged impurity effect on the quantum entanglement (QE) in some low-lying states are carried out. It is found that, both the positive charged impurity (PCI) and the negative charged impurity (NCI)reduce the QE in the low-lying states under consideration except that the QE in the ground state is enhanced by the NCI. Additionally, in the domain of B from 0 Tesla to 15 Tesla, the ground state energy E, the ground state angular momentum L and the ground state QE entropy S are worked out. As far as the ground state are concerned, the PCI (NCI) blocks (induces) the angular momentum phase transition and the QE phase transition besides the known fact (i. e., the PCI/NCI decreases/increases the energy) in the magnetic field.  相似文献   

18.
In this paper, we investigate the entanglement of a two-spin system with Heisenberg exchange interaction in a quantized field. The pairwise entanglement between bipartite subsystems is obtained. It is shown that the entanglement exhibits a quantum phase transition due to the variation of exchang coupling. Phase diagrams are obtained explicitly. The analogy of the quantum phase transition compared to the case under a classical field are addressed.  相似文献   

19.
张勇  刘丹  龙桂鲁 《中国物理》2007,16(2):324-328
The ground-state entanglement associated with a three-spin transverse Ising model is studied. By introducing an energy current into the system, a quantum phase transition to energy-current phase may be presented with the variation of external magnetic field; and the ground-state entanglement varies suddenly at the critical point of quantum phase transition. In our model, the introduction of energy current makes the entanglement between any two qubits become maximally robust.  相似文献   

20.
Based on the effective-field theory with self-spin correlations and the differential operator technique,physical properties of the spin-2 system with biaxial crystal field on the simple cubic, body-centered cubic, as well as faced-centered lattice have been studied. The influences of the external longitudinal magnetic field on the magnetization,internal energy, specific heat, and susceptibility have been discussed in detail. The phenomenon that the magnetization in the ground state shows quantum effects produced by the biaxial transverse crystal field has been found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号