首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We construct the moduli spaces associated to the solutions of equations of motion (modulo gauge transformations) of the Poisson sigma model with target being an integrable Poisson manifold. The construction can be easily extended to a case of a generic integrable Lie algebroid. Indeed for any Lie algebroid one can associate a BF-like topological field theory which localizes on the space of algebroid morphisms, that can be seen as a generalization of flat connections to the groupoid case. We discuss the finite gauge transformations and discuss the corresponding moduli spaces. We consider the theories both without and with boundaries.  相似文献   

2.
A framework for constructing new kinds of gauge theories is suggested. Essentially it consists in replacing Lie algebras by Lie or Courant algebroids. Besides presenting novel topological theories defined in arbitrary spacetime dimensions, we show that equipping Lie algebroids E with a fiber metric having sufficiently many E-Killing vectors leads to an astonishingly mild deformation of ordinary Yang-Mills theories: Additional fields turn out to carry no propagating modes. Instead, they serve as moduli parameters gluing together in part different Yang-Mills theories. This leads to a symmetry enhancement at critical points of these fields, as is also typical for String effective field theories.  相似文献   

3.
Derived Brackets   总被引:3,自引:1,他引:2  
We survey the many instances of derived bracket construction in differential geometry, Lie algebroid and Courant algebroid theories, and their properties. We recall and compare the constructions of Buttin and of Vinogradov, and we prove that the Vinogradov bracket is the skew-symmetrization of a derived bracket. Odd (resp., even) Poisson brackets on supermanifolds are derived brackets of canonical even (resp., odd) Poisson brackets on their cotangent bundle (resp., parity-reversed cotangent bundle). Lie algebras have analogous properties, and the theory of Lie algebroids unifies the results valid for manifolds on the one hand, and for Lie algebras on the other. We outline the role of derived brackets in the theory of Poisson structures with background'.  相似文献   

4.
Derived Brackets     
We survey the many instances of derived bracket construction in differential geometry, Lie algebroid and Courant algebroid theories, and their properties. We recall and compare the constructions of Buttin and of Vinogradov, and we prove that the Vinogradov bracket is the skew-symmetrization of a derived bracket. Odd (resp., even) Poisson brackets on supermanifolds are derived brackets of canonical even (resp., odd) Poisson brackets on their cotangent bundle (resp., parity-reversed cotangent bundle). Lie algebras have analogous properties, and the theory of Lie algebroids unifies the results valid for manifolds on the one hand, and for Lie algebras on the other. We outline the role of derived brackets in the theory of ‘Poisson structures with background’.  相似文献   

5.
6.
The theory of Nambu–Poisson structures on manifolds is extended to the context of Lie algebroids in a natural way based on the derived bracket associated with the Lie algebroid differential. A new way of combining Nambu–Poisson structures and triangular Lie bialgebroids is described in this work. Also, we introduce the concept of a higher order Dirac structure on a Lie algebroid. This allows to describe both Nambu–Poisson structures and Dirac structures on manifolds in the same setting.  相似文献   

7.
A theorem of Muhly–Renault–Williams states that if two locally compact groupoids with Haar system are Morita equivalent, then their associated convolution C*-algebras are strongly Morita equivalent. We give a new proof of this theorem for Lie groupoids. Subsequently, we prove a counterpart of this theorem in Poisson geometry: If two Morita equivalent Lie groupoids are s-connected and s-simply connected, then their associated Poisson manifolds (viz. the dual bundles to their Lie algebroids) are Morita equivalent in the sense of P. Xu.  相似文献   

8.
In recent years, methods for the integration of Poisson manifolds and of Lie algebroids have been proposed, the latter being usually presented as a generalization of the former. In this Letter it is shown that the latter method is actually related to (and may be derived from) a particular case of the former if one regards dual of Lie algebroids as special Poisson manifolds. The core of the proof is the fact, discussed in the second part of this Letter, that coisotropic submanifolds of a (twisted) Poisson manifold are in one-to-one correspondence with possibly singular Lagrangian subgroupoids of source-simply-connected (twisted) symplectic groupoids.  相似文献   

9.
Form factors are quantities that involve both asymptotic on-shell states and gauge invariant operators. They provide a natural bridge between on-shell amplitudes and off-shell correlation functions of operators, thus allowing us to use modern on-shell amplitude techniques to probe into the off-shell side of quantum field theory. In particular, form factors have been successfully used in computing the cusp(soft) anomalous dimensions and anomalous dimensions of general local operators. This review is intended to provide a pedagogical introduction to some of these developments. We will first review some amplitudes background using four-point amplitudes as main examples. Then we generalize these techniques to form factors, including(1) tree-level form factors,(2) Sudakov form factor and infrared singularities, and(3) form factors of general operators and their anomalous dimensions. Although most examples we consider are inN= 4 super-Yang-Mill theory, the on-shell methods are universal and are expected to be applicable to general gauge theories.  相似文献   

10.
It is shown that the correct mathematical implementation of symmetry in the geometric formulation of classical field theory leads naturally beyond the concept of Lie groups and their actions on manifolds, out into the realm of Lie group bundles and, more generally, of Lie groupoids and their actions on fiber bundles. This applies not only to local symmetries, which lie at the heart of gauge theories, but is already true even for global symmetries when one allows for fields that are sections of bundles with (possibly) non-trivial topology or, even when these are topologically trivial, in the absence of a preferred trivialization.  相似文献   

11.
 We introduce a class of spin Calogero-Moser systems associated with root systems of simple Lie algebras and give the associated Lax representations (with spectral parameter) and fundamental Poisson bracket relations. The associated integrable models (called integrable spin Calogero-Moser systems in the paper) and their Lax pairs are then obtained via Poisson reduction and gauge transformations. For Lie algebras of A n -type, this new class of integrable systems includes the usual Calogero-Moser systems as subsystems. Our method is guided by a general framework which we develop here using dynamical Lie algebroids. Received: 19 October 2001 / Accepted: 7 June 2002 Published online: 21 October 2002 RID="*" ID="*" Research partially supported by NSF grant DMS00-72171.  相似文献   

12.
《Nuclear Physics B》2005,706(3):549-568
The background field method (BFM) for the Poisson sigma model (PSM) is studied as an example of the application of the BFM technique to open gauge algebras. The relationship with Seiberg–Witten maps arising in non-commutative gauge theories is clarified. It is shown that the implementation of the BFM for the PSM in the Batalin–Vilkovisky formalism is equivalent to the solution of a generalized linearization problem (in the formal sense) for Poisson structures in the presence of gauge fields. Sufficient conditions for the existence of a solution and a constructive method to derive it are presented.  相似文献   

13.
O. Oron  L. P. Horwitz   《Physics letters. A》2001,280(5-6):265-270
We show that the problem of radiation reaction may be formulated in a space of five dimensions, with five corresponding gauge fields in the framework of the classical version of a fully gauge covariant form of the Stueckelberg–Feynman–Schwinger covariant mechanics (the zero mode fields of the 0,1,2,3 components correspond to the Maxwell fields). The particles and fields are not confined to their mass shells. We show that in the mass-shell limit, the generalized Lorentz force obtained by means of the retarded Green's functions for the five-dimensional field equations provides the classical Abraham–Lorentz–Dirac radiation reaction terms (with renormalized mass and charge). We also obtain general coupled equations for the orbit and the off-shell dynamical mass during the evolution as well as an autonomous nonlinear equation of third order for the off-shell mass. The theory does not admit radiation if the particle does not move off-shell. The structure of the equations implies that the mass-shell deviation is bounded when the external field is removed.  相似文献   

14.
The modular automorphism group of a Poisson manifold   总被引:3,自引:0,他引:3  
The modular flow of Poisson manifold is a 1-parameter group of automorphisms determined by the choice of a smooth density on the manifold. When the density is changed, the generator of the group changes by a hamiltonian vector field, so one has a 1-parameter group of “outer automorphisms” intrinsically attached to any Poisson manifold. The group is trivial if and only if the manifold admits a measure which is invariant under all hamiltonian flows.

The notion of modular flow in Poisson geometry is a classical limit of the notion of modular automorphism group in the theory of von Neumann algebras. In addition, the modular flow of a Poisson manifold is related to modular cohomology classes for associated Lie algebroids and symplectic groupoids. These objects have recently turned out to be important in Poincaré duality theory for Lie algebroids.  相似文献   


15.
We study the occurrence of global gauge anomalies in the coset models of two-dimensional conformal field theory that are based on gauged WZW models. A complete classification of the non-anomalous theories for a wide family of gauged rigid adjoint or twisted-adjoint symmetries of WZW models is achieved with the help of Dynkin’s classification of Lie subalgebras of simple Lie algebras.  相似文献   

16.
Traditionally symmetries of field theories are encoded via Lie group actions, or more generally, as Lie algebra actions. A significant generalization is required when “gauge parameters” act in a field dependent way. Such symmetries appear in several field theories, most notably in a “Poisson induced” class due to Schaller and Strobl [SS94] and to Ikeda [Ike94], and employed by Cattaneo and Felder [CF99] to implement Kontsevich's deformation quantization [Kon97]. Consideration of “particles of spin > 2” led Berends, Burgers and van Dam [Bur85,BBvD84,BBvD85] to study “field dependent parameters” in a setting permitting an analysis in terms of smooth functions. Having recognized the resulting structure as that of an sh-Lie algebra (L -algebra), we have now formulated such structures entirely algebraically and applied it to a more general class of theories with field dependent symmetries. Received: 14 December 2000 / Accepted: 8 February 2002?Published online: 2 October 2002  相似文献   

17.
18.
We make connections between studies in the condensed matter literature on quantum phase transitions in square lattice antiferromagnets, and results in the particle theory literature on abelian supersymmetric gauge theories in 2 + 1 dimensions. In particular, we point out that supersymmetric U(1) gauge theories (with particle content similar, but not identical, to those of theories of doped antiferromagnets) provide rigorous examples of quantum phase transitions which do not obey the Landau-Ginzburg-Wilson paradigm (often referred to as transitions realizing “deconfined criticality”). We also make connections between supersymmetric mirror symmetries and condensed matter particle-vortex dualities.  相似文献   

19.
20.
We construct N=1 supersymmetric (SUSY) field theory in 4+2 dimensions compatible with the theoretical framework of two-time (2T) physics and its gauge symmetries. The fields are arranged into 4+2 dimensional chiral and vector supermultiplets, and their interactions are uniquely fixed by SUSY and 2T physics gauge symmetries. In a particular gauge the 4+2 theory reduces to ordinary supersymmetric field theory in 3+1 dimensions without any Kaluza-Klein remnants, but with some additional constraints in 3+1 dimensions of interesting phenomenological relevance. This construction is another significant step in the development of 2T physics as a structure that stands above 1T physics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号