首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ribosomal peptide natural products are ubiquitous, yet relatively few tools exist to predict structures and clone new pathways. Cyanobactin ribosomal peptides are found in ~30% of all cyanobacteria, but the connection between gene sequence and structure was not defined, limiting the rapid identification of new compounds and pathways. Here, we report discovery of four orphan cyanobactin gene clusters by genome mining and an additional pathway by targeted cloning, which represented a tyrosine O-prenylating biosynthetic pathway. Genome mining enabled discovery of five cyanobactins, including peptide natural products from Spirulina supplements. A phylogenetic model defined four cyanobactin genotypes, which explain the synthesis of multiple cyanobactin structural classes and help direct pathway cloning and structure prediction efforts. These strategies were applied to DNA isolated from a mixed cyanobacterial bloom containing cyanobactins.  相似文献   

2.
3.
Covering: 1957 to 2011. 3-Amino-5-hydroxy benzoic acid (3,5-AHBA) is a precursor for a large group of natural products, including the family of naphthalenic and benzenic ansamycins, the unique saliniketals, and the family of mitomycins. This review covers the biosynthesis of AHBA-derived natural products from a molecular genetics, chemical, and biochemical perspectives, and 174 references are cited.  相似文献   

4.
5.
6.
Covering: 1997 to 2010. The angucycline group is the largest group of type II PKS-engineered natural products, rich in biological activities and chemical scaffolds. This stimulated synthetic creativity and biosynthetic inquisitiveness. The synthetic studies used five different strategies, involving Diels-Alder reactions, nucleophilic additions, electrophilic additions, transition-metal mediated cross-couplings and intramolecular cyclizations to generate the angucycline frames. Biosynthetic studies were particularly intriguing when unusual framework rearrangements by post-PKS tailoring oxidoreductases occurred, or when unusual glycosylation reactions were involved in decorating the benz[a]anthracene-derived cores. This review follows our previous reviews, which were published in 1992 and 1997, and covers new angucycline group antibiotics published between 1997 and 2010. However, in contrast to the previous reviews, the main focus of this article is on new synthetic approaches and biosynthetic investigations, most of which were published between 1997 and 2010, but go beyond, e.g. for some biosyntheses all the way back to the 1980s, to provide the necessary context of information.  相似文献   

7.
Biosynthesis of polypeptide antibiotics   总被引:2,自引:0,他引:2  
  相似文献   

8.
Recent research on the chemistry of natural products from the author's group that led to the receipt of the ACS Ernest Guenther Award in the Chemistry of Natural Products is reviewed. REDOR NMR and synthetic studies established the T-taxol conformation as the bioactive tubulin-binding conformation, and these results were confirmed by the synthesis of compounds which clearly owed their activity or lack of activity to whether or not they could adopt the T-taxol conformation. Similar studies with the epothilones suggest that the current tubulin-binding model needs to be modified. Examples of natural products discovery and biodiversity conservation in Suriname and Madagascar are also presented, and it is concluded that natural products chemistry will continue to make significant contributions to drug discovery.  相似文献   

9.
The indolocarbazole family of natural products, including the biosynthetically related bisindolylmaleimides, is reviewed (with 316 references cited). The isolation of indolocarbazoles from natural sources and the biosynthesis of this class of compounds are thoroughly reviewed, including recent developments in molecular genetics, enzymology and metabolic engineering. The biological activities and underlying modes of action displayed by natural and synthetic indolocarbazoles is also presented, with an emphasis on the development of analogs that have entered clinical trials for its future use against cancer or other diseases.  相似文献   

10.
The C7N aminocyclitol family of natural products   总被引:1,自引:0,他引:1  
This review covers microbial secondary metabolites classified in the family of C7N aminocyclitols, a relatively new class of natural products that is increasingly gaining recognition due to their significant biomedical and agricultural uses. Their discovery and structure determinations, their biosynthetic origin, biological properties, chemical synthesis, as well as their further development for pharmaceutical uses are described. The literature from 1970 to July 2002 is reviewed, with 269 references cited.  相似文献   

11.
12.
13.
14.
Since their first discovery in 1959, natural products containing the piperazic acid motif have been isolated from a variety of sources and exhibit diverse biological activity profiles. This review provides information about their isolation and biological activities, and presents an overview of recent total syntheses of these molecules.  相似文献   

15.
Covering: 1949 to 2011This review highlights the broad range of science that has arisen from the isolation of pederin, the mycalamides, theopederins, and onnamides, and psymberin. Specific topics include structure determination, biological activity, synthesis, and analog preparation and analysis.  相似文献   

16.
The avenaciolide family of natural products are small α-methylene bis-γ-lactones that exhibit a wide variety of biological activities. Herein we report concise syntheses of five members of this family of natural products along with the synthesis of one non-natural analogue. The syntheses proceed in five or six steps from simple, commercially available compounds and feature a key oxidative cyclization/lactonization reaction that likely occurs via a radical mechanism.  相似文献   

17.
Quinazoline is a heterocyclic compound having biological activities. It is aromatic in nature having bicyclic structure containing benzene ring and pyrimidine ring. Quinazoline and its derivatives are found to have wide range of biological activities that is anticancer, analgesic, antimicrobial, antihypertensive, anticonvulsant, antimalarial, antitumor, and anti-tubercular activities. The purpose of this review is to highlight the recent researches made by researchers on various biological activities of quinazoline derivatives on different targets.  相似文献   

18.
The review summarises natural products containing the 2-pyrone moiety. An emphasis has been placed upon the biological activity associated with 2-pyrones, particularly with respect to potential therapeutic or anti-microbial agents. Where appropriate, non-natural 2-pyrone analogues are discussed, particularly those derived from natural product lead compounds.  相似文献   

19.
Texaline, an antimycobacterial oxazole-containing alkaloid previously isolated from Amyris texana and A. elemifera, and related compounds have been synthesized in order to explore aspects of the structure-antituberculosis activity relationship. While texaline was found to be inactive in our assays, simpler diaryloxazoles were more active whilst also exhibiting modest toxic selectivity, leading to their identification as potential lead compounds.  相似文献   

20.
The sorbicillinoids are a family of hexaketide metabolites that have been isolated from a variety of fungal sources, collected from both marine and terrestrial sources. Since 1948, the family has grown in size to include over 50 members, many of which have complex, highly oxygenated, bicyclic and tricyclic frameworks. In conjunction with their biological activity, the structural complexity of these structures has inspired several synthetic campaigns and has also led to controversy surrounding the biosynthetic pathway responsible for the natural production of these compounds. Through this review, we aim to give a historical perspective to each of these areas and hope to inspire new avenues of research for addressing the knowledge gaps that still exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号