首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The turbulent drag reduction characteristics of the rod-like polysaccharide xanthan gum dissolved in water was investigated using a rotating disk apparatus. The ultrasonic degradation method was adopted to obtain polymer fractions of different molecular weights of xanthan gum for this study. The drag reduction curve was then plotted to observed the universal characteristics of xanthan gum, and the intrinsic concentration was found to be an extremely useful quantity in normalizing the drag reduction data for different molecular weights.  相似文献   

2.
Polymer-induced turbulent drag reduction by adding a minute amount of high-molecular weight polyisobutylene (PIB) into two different organic solvents of n-heptane and xylene was examined using a rotating disk system. The dependence of drag reduction (DR) efficiency on various factors such as polymer molecular weight, polymer concentration (C), and solvent quality was examined. Based on the linear relationship between C and C/DR for different molecular weights of PIB, a universal curve was able to characterize a particular polymer/solvent family, independent of the molecular weight of polymer.  相似文献   

3.
A reduction of frictional drag in turbulent flow was obtained in benzene by using three monodisperse polystyrene samples having weight-average molecular weights of 1.8, 4.1 and 7.1 × 106. By testing these polymers individually and in mixtures, data were obtained for samples with known molecular weight distributions. The drag reduction of these samples was studied as a function of polymer concentration and flow rate so that a generalized picture of the effects of polydispersity could be obtained. These results are used to help explain much of the behavior that was observed for polystyrene and other polymers. This includes the fact that the polystyrene samples exhibit a remarkably high resistance to the loss of drag reduction via degradation in turbulent flow. Such experiments indicate that drag reduction and degradation depend strongly on molecular weight distribution. Thus a molecular level interpretation of experimental results cannot be made unless the effects of the distribution are considered.  相似文献   

4.
Drag reduction in Taylor flow of polystyrene solutions is investigated using a commercial rheometer equipped with a standard double-gap sample holder with axial symmetry. The dependence of drag reduction on various factors, including polymer molar mass, polymer concentration, and thermodynamic conditions is studied. Drag reduction induced by polystyrene in toluene is found to increase with increasing polymer concentration in the dilute concentration regime. It is also seen that molecules with high molar mass of the polymer promote drag reduction. In terms of hydrodynamic volume fraction normalisation, it is found that most of the drag reduction effect occurs at volume fractions below 0.2. It is observed that drag reduction is favoured by good thermodynamic conditions of the polymer-solvent system. Both the flow induced extension of the polymer chains and the hydrodynamic volume fraction occupied by the polymer molecules seem to play an important role for the drag reduction effect.  相似文献   

5.

We have examined the relationships between primary, secondary, and tertiary structures of polysaccharides exhibiting the rheological property of friction (drag) reduction in turbulent flows. We found an example of an exopolysaccharide from the yeastCryptococcus laurentii that possessed high molecular weight but exhibited lower than expected drag reducing activity. Earlier correlations by Hoyt (8,10) showing that β1 → 3, β→4, and αl → 3 linkages in polysaccharides favored drag reduction were expanded to include correlations to secondary structure. The effect of sidechains in a series of gellan gums was shown to be related to sidechain length and position. Disruption of secondary structure in drag reducing polysaccharides reduced drag reducing activity for some but not all exopolysaccharides. The polymer fromC. laurentii was shown to be more stable than xanthan gum and other exopolysaccharides under the most vigorous of denaturing conditions. We also showed a direct relationship between extensional viscosity measurements and the drag reducing coefficient for four exopolysaccharides.

  相似文献   

6.
Hydrophobically associating polymer (HAMDP) was synthesized by using acrylamide, acrylic acid, 2-acrylamido-2-methylpropane sulfonic acid and dodecyl 2-methylacrylate as main monomers. Dynamic rheometer and self-made simulation evaluation apparatus were used to test the rheological and drag reduction properties of HAMDP. With the mass concentration increased, the apparent viscosity of HAMDP increased. The critical aggregation concentration was 2.29g/L. With the changement of the strain, the elastic modulus was larger than viscous modulus. With the increment of HAMDP, the area of thixotropic loop increased. Compared with commercial polyacrylamide, the drag reduction rate of HAMDP could be up to 62.38%.  相似文献   

7.
Turbulent drag reduction in Couette flow was investigated in terms of a decrease in wall shear stress for aqueous solutions of a nonionic polymer, poly(ethylene oxide) (PEO), a cationic surfactant, hexadecyltrimethylammonium chloride (HTAC), and their mixtures. Consistent with literature data, drag reduction was observed for PEO solutions above a critical molecular weight, 0.91 x 10(5) < Mc < 3.04 x 10(5) g/mol. Maximum drag reduction occurred at an optimum concentration, c(PEO)*, which scales inversely with molecular weight, and the % maximum drag reduction increases with molecular weight. For aqueous HTAC solutions, wall shear stress decreased with increasing HTAC concentration and leveled off at an optimum concentration, c(HTAC)*, comparable to the critical micelle concentration. For HTAC/PEO mixtures, the critical PEO molecular weight for drag reduction decreases, interpreted as due to an increase in hydrodynamic volume because of binding of HTAC micelles to PEO. Consistent with this interpretation, at fixed PEO concentration, maximum drag reduction was observed at an optimum HTAC concentration, c(HTAC/PEO)*, comparable to the maximum binding concentration, MBC. Also, with HTAC concentration fixed at the MBC, the optimum PEO concentration for drag reduction, c(PEO/HTAC)*, decreases relative to that, c(PEO)*, in the absence of HTAC.  相似文献   

8.
 Polymer-induced turbulent drag reduction in a rotating disk apparatus was investigated using nonionic poly(ethylene oxide) (PEO) in a synthetic saline solution with novel application to ocean thermal energy conversion technology. A maximum total (skin friction plus form) drag reduction of 30% was obtained with 50 wppm of PEO with molecular weight 5.0 × 106. The concentration dependence of the percentage drag reduction for the PEO/saline solution system is found to fit Virk's empirical correlation, and a universal correlation for various molecular weights and Reynolds numbers is also presented. Furthermore, hydrodynamic volume fraction was introduced to correlate drag reduction efficiency with molecular parameters in this PEO/saline solution system. Received: 28 December 1999/Accepted: 17 February 2000  相似文献   

9.
The investigation of the interfacial toughness of polymer layered laminar composites with two different approaches produced results differing by up to an order of magnitude and following opposite trends with respect to the strain rates. The flexural modulus and neutral axis of a constrained epoxy‐adhesive layer bound to a painted metal substrate varied with the thickness of the adhesive layer. The adhesion energy depended on the rate at which the force was transmitted to the adhesion bonds—not just on the strength of the adhesion bonds—and on the concomitant strain hardening at high strain rates. As the strain rate and thickness of the polymer layer increased, the transition from a cohesive mode to an adhesive–cohesive (polymer–polymer interface) mode of debonding led to the observed high adhesion energy. The high adhesion energy and increased strain hardening were attributed to the formation of organic–inorganic composites and nanocomposites within the polymer matrix, which evolved as a result of the interactions between the metal oxide pigments and fillers with the polymer matrix during curing. Scission of the polymer chains at the interface was proposed to be the predominant fracture mechanism; it was based on the high relaxation time (~1017 s) and the high activation energy (~175 kJ mol?1). © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3822–3835, 2004  相似文献   

10.
The presence of very small amounts (ppm) of high-MW polymers in solution produces high levels of drag reduction in a turbulent flow. This phenomenon, often termed as the Toms effect, is highly dependent not only on MW, but also on the flexibility of the macromolecular chain. The Toms effect can be studied through the images of the structures produced after the drop impact against shallow solution surfaces. The splash structures composed of crown, cavity, and Rayleigh jet are highly dependent on the elongational properties of the solution. This work presents the effects of Congo red on the drag reduction properties of poly(ethylene oxide) in aqueous solutions through the analysis of splash structures. Results obtained in this analysis indicate that Congo red molecules act as physical cross-linking agents, decreasing the polymer elasticity and its drag reduction capacity. It was observed that the maximum height of the Rayleigh jet can be used as a sensitive parameter to the complexation between the dye and the polymer molecules.  相似文献   

11.
The absorbing process in isolating and coating process of α-olefin drag reducing polymer was studied by molecular dynamic simulation method, on basis of coating theory of α-olefin drag reducing polymer particles with polyurethane as coating material. The distributions of sodium laurate, sodium dodecyl sulfate, and sodium dodecyl benzene sulfonate on the surface of α-olefin drag reducing polymer particles were almost the same, but the bending degrees of them were obviously different. The bending degree of SLA molecules was greater than those of the other two surfactant molecules. Simulation results of absorbing and accu-mulating structure showed that, though hydrophobic properties of surfactant molecules were almost the same, water density around long chain sulfonate sodium was bigger than that around alkyl sulfate sodium. This property goes against useful absorbing and accumulating on the surface of α-olefin drag reducing polymer particles; simulation results of interactions of different surfactant and multiple hydroxyl compounds on surface of particles showed that, interactions of different surfactant and one kind of multiple hydroxyl compound were similar to those of one kind of surfactant and different multiple hydroxyl compounds. These two contrast types of interactions also exhibited the differences of absorbing distribution and closing degrees to surface of particles. The sequence of closing degrees was derived from sim-ulation; control step of addition polymerization interaction in coating process was absorbing mass transfer process, so the more closed to surface of particle the multiple hydroxyl com-pounds were, the easier interactions with isocyanate were. Simulation results represented the compatibility relationship between surfactant and multiple hydroxyl compounds. The isolating and coating processes of α-olefin drag reducing polymer were further understood on molecule and atom level through above simulation research, and based on the simulation, a referenced theoretical basis was provided for practical optimal selection and experimental preparation of α-olefin drag reducing polymer particles suspension isolation agent.  相似文献   

12.
Mooney's version of the molecular theory of polymer networks has been generalized to the case when the external strain applied in the isotropic state is different from that at network formation. As in the theory of equilibrium behavior of the polymer networks, this generalization allows inclusion in the viscoelastic functions of effects connected with the temperature dependence of internal energy of the chains and with the strain effect of the solvent. From viscoelastic functions thus generalized, it is possible to derive a relation for calculation of the monomeric friction coefficient. It also suggests the possibility of superposing data obtained at various temperatures, degrees of swelling, and condition of network formation.  相似文献   

13.
Hydrogels of poly(2-hydroxyethyl methacrylate) (PHEMA) with well-defined polyelectrolyte brushes of poly(sodium 4-styrenesulfonate) (PNaSS) of various molecular weights were synthesized, keeping the distance between the polymer brushes constant at ca. 20 nm. The effect of polyelectrolyte brush length on the sliding friction against a glass plate, an electrorepulsive solid substrate, was investigated in water in a velocity range of 7.5 x 10(-5) to 7.5 x 10(-2) m/s. It is found that the presence of polymer brush can dramatically reduce the friction when the polymer brushes are short. With an increase in the length of the polymer brush, this drag reduction effect only works at a low sliding velocity, and the gel with long polymer brushes even shows a higher friction than that of a normal network gel at a high sliding velocity. The strong polymer length and sliding velocity dependence indicate a dynamic mechanism of the polymer brush effect.  相似文献   

14.
It has been shown, using the significant structure theory of liquids, that a lower critical solution temperature behavior as well as a upper critical solution temperature behavior can be expected for polymer–polymer systems and that a phase diagram of closed-loop-type in a polymer–polymer–solvent system can be possible. In this article the sublimation energy of a mixture was expressed as a quadratic form of segment surface fractions on pure components rather than that of mole fractions, and the effect of the segment surface fractions on critical compositions was explained. The calculated partial miscibilities were in good agreement with the experiment.  相似文献   

15.
We designed a self‐assembled multichromophoric organic molecular arrangement inside polymer nanoparticles for light‐harvesting antenna materials. The self‐assembled molecular arrangement of quaterthiophene molecules was found to be an efficient light‐absorbing antenna material, followed by energy transfer to Nile red (NR) dye molecules, which was confined in polymer nanoparticles. The efficiency of the antenna effect was found to be 3.2 and the effective molar extinction coefficient of acceptor dye molecules was found to be enhanced, which indicates an efficient light‐harvesting system. Based on this energy‐transfer process, tunable photo emission and white light emission has been generated with 14 % quantum yield. Such self‐assembled oligothiophene–NR systems encapsulated in polymer nanoparticles may open up new possibilities for fabrication of artificial light harvesting system.  相似文献   

16.
Beginning with a recently proposed expression for the drag force on a single macromolecule pulled with constant velocity through a fluid of long‐entangled molecules (V. R. Mhetar and L. A. Archer, Macromolecules 1998, 31, 6639), we investigate the effect of entanglement loss on polymer dynamics in steady shearing flows. At steady‐state, a balance between the elastic restoring force and viscous drag acting on entangled polymer segments reveals a critical molecular strain γm,c beyond which the drag force exerted on polymer molecules by their neighbors is insufficient to support arbitrarily small orientation angles. Specifically, we find that in fast steady shear flows τ < γ˙ < τ, polymer orientation in the shear plane approaches a limiting angle χc ≈ atau(1/(1 + γm,c)) beyond which flow becomes incapable of producing further molecular alignment. Shear flow experiments using a series of concentrated polystyrene/diethyl phthalate solutions with fixed entanglement spacing, but variable polymer molecular weight 0.94 × 106Mw ≤ 5.48 × 106, reveal a limiting steady‐state orientation angle between 6° and 9° over a range of shear rates; confirming the theoretical result. Orientation angle undershoots observed during start‐up of fast steady shearing flows are also explained in terms of a transient imbalance of elastic restoring force and viscous drag on oriented polymer molecules. Our findings suggest that the Doi–Edwards affine orientation tensor (Q) is not universal, but rather depends on deformation type and deformation history through a balance of elastic force and viscous drag on polymer molecules. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 222–233, 2000  相似文献   

17.
In this article the demixing instability and phase segregation in unentangled polymer solutions of semiflexible chains at high‐rate uniaxial extension above the coil to stretched coil transition was studied. Orientation of the stretched chains was described in terms of an effective potential field. Based on the free energy analysis it was shown that the flow‐induced orientation of polymer segments could drastically reduce the energy of their steric repulsion. As a result attraction between the chains gain more importance, and this effect lead to the demixing process and eventual segregation of polymer from the solvent if the strain rate exceeds some critical value. A mean‐field theory was developed to study this flow‐induced phase separation effect. The phase diagrams of the system showing the spinodal and binodal transitions at different extension rates were calculated and discussed. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1066–1073  相似文献   

18.
基于多重缠结网络结构模型和高分子链上缠结点在流动中可进行动态解缠和再缠结的多重蠕动机理,用统计力学和动力学相结合的方法,分别计算出了缠结链组的末端距分布函数;处于缠结状态下高分子链构象统计分布函数;受力下聚合物熔体粘弹性形变自由能和解除外力下高分子挤出体可回复性粘弹性形变自由能,提出了高分子挤出体可回复形变的粘弹性分子理论。推导出的高分子熔体的回忆函数、简单剪切流下的本构方程和物料函数,并采用一种新的方法测定出物料的四种参数: η0、 GN0、 n′和 a。对于高分子挤出体,可回复性粘弹性形变由快速弹性形变和慢速粘弹性形变两者组成,当把两种形变量的复合结构参数-分子链的反式构象分数引入两种形变自由能表达式后,就从理论上得到了可回复形变量同挤出胀大比间的定量表达式,从而建立起一个具有分子链结构参数的新的挤出胀大比方程,可回复形变量同挤出条件(温度、挤出速率和量以及口模长径比不同的挤出机)和树脂结构特征(分子量及分布)的关系式以及在特殊情形下的简化表达式,并用几种高分子熔融体系的挤出胀大比和可回复性形变量的实验数据对理论进行验证,理论方程同实验数据较好的符合。  相似文献   

19.
A quasi-thermodynamic model for expansion of polymer configuration in solution is investigated. The model is based on Gaussian distribution of segments and mean field theory of polymer solution. An in-homogeneous contribution to the free energy of solution is proposed. It arises from the nonhomogeneous distribution of polymer segements. This effects makes the expansion factor α to be larger than those without the effect considered. Some numerical consequence for the case Polydimethylsiloxane+cyclohexane solution is calculated. Our theory predicts a larger value a than the case without inhomogeneous effect being considered. The difference becomes less significant at higher molecular weight.  相似文献   

20.
The phase behavior of narrow molecular weight distribution samples of polystyrene and polyisoprene in the presence of toluene was investigated by means of gel permeation chromatography. Equilibrium phase diagrams, tie lines, and critical points for a number of partially miscible polystyrene-polyisoprene-toluene systems were generated at 15 and 30°C and 1 atm pressure. The data were combined with previously reported results at 45°C. Using the experimentally determined phase compositions along with literature values of the polymer–solvent interaction parameters, the polymer–polymer interaction parameters were evaluated using the Flory–Huggins theory. The influence of temperature, polymer molecular weight, and polymer–solvant interaction parameters on the size, shape, and location of the equilibrium phase curve, the location of the critical point, and the polymer–polymer interaction parameter was studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号