首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of organic sulfur compounds on the radical polymerization of methyl methacrylate initiated by azobisisobutyronitrile at 50°C. has been studied. The sulfur compounds used were benzene-type polysulfides (C6H5CH2? Sn? CH2C6H5; n = 0–4), benzyl mercaptan, and sulfur (S8). All sulfur compounds studied, except dibenzyl, dibenzyl monosulfide, and dibenzyl disulfide, were found to behave as retarders under these experimental conditions. Chain-transfer constants of these compounds were determined from rate measurements and from the conventional method based on numberaverage degree of polymerization. Chain-transfer constants of benzyl-type polysulfides were less than those of mercaptan and sulfur and increased with increasing sulfur. The correlation of the reactivities of sulfur compounds as transfer agents and their molecular structures is discussed.  相似文献   

2.
Abstract

Electrophilic trisubstituted ethylenes, ring‐substituted ethyl 2‐cyano‐3‐phenyl‐2‐propenoates, RC6H4CH?C(CN)CO2C2H5 (where R is 2‐CH3, 3‐CH3, 4‐CH3, 2‐OCH3, 3‐OCH3, and 4‐OCH3) were prepared and copolymerized with styrene (ST). The monomers were synthesized by the piperidine catalyzed Knoevenagel condensation of ring‐substituted benzaldehydes and ethyl cyanoacetate, and characterized by CHN analysis, IR, 1H and 13C NMR. All the ethylenes were copolymerized with ST (M1) in solution with radical initiation (AIBN) at 70°C. The compositions of the copolymers were calculated from nitrogen analysis and the structures were analyzed by IR, 1H and 13C NMR. The order of relative reactivity (1/r 1) for the monomers is 3‐OCH3 (0.88)?>?4‐CH3 (0.71)?>?2‐OCH3 (0.68)?>?3‐CH3 (0.55)?>?2‐CH3 (0.47)?>?4‐OCH3 (0.40). Higher T g of the copolymers in comparison with that of polystyrene indicates a decrease in chain mobility of the copolymer due to the high dipolar character of the TSE structural unit. Gravimetric analysis indicated that the copolymers decompose in the 257–287°C range.  相似文献   

3.
Preparation of Tetramethylammonium Azidosulfite and Tetramethylammonium Cyanate Sulfur Dioxide‐Adduct, [(CH3)4N]+[SO2N3], [(CH3)4N]+[SO2OCN] and Crystal Structure of [(CH3)4N]+[SO2N3] Tetramethylammonium azide forms with sulfur dioxide an azidosulfite salt. It is characterized by NMR and vibrational spectroscopy and the crystal structure analysis. [(CH3)4N]+[SO2N3] crystallizes in the monoclinic space group P21/c with a = 551.3(1) pm, b = 1095.2(1) pm, c = 1465.0(1) pm, β = 100.63(1)°, and four formula units in the unit cell. The crystal structure possesses a strong S–N interaction between the N3– anions and the SO2 molecules. The S–N distance of 200.5(2) pm is longer than a covalent single S–N bond. The structure is compared with ab initio calculated data. Furthermore an adduct of tetrametylammonium cyanate and sulfur dioxide is reported. It is characterised by NMR and vibrational spectroscopy. The structure is calculated by ab initio methods.  相似文献   

4.
R*OCH2CH2CH2SO2Ph (R*OH = MenOH, (–)‐menthol, ( 3a ); BorOH, (1S)‐(–)‐borneol, ( 3b )) were found to react with n‐BuLi in n‐pentane/n‐hexane and toluene/n‐hexane under deprotonation yielding LiCH(CH2CH2OR*)SO2Ph (R* = Men, ( 4a ); Bor, ( 4b )) which reacted with n‐Bu3SnCl forming the requisite tri(n‐butyl)tin compounds n‐Bu3SnCH(CH2CH2OR*)SO2Ph (R* = Men, ( 5a ); Bor, ( 5b )) as diastereomeric mixtures. The identities of 5a and 5b were unambiguously proved by 1H, 13C and 119Sn NMR spectroscopic measurements. Solutions of 4a afforded crystals of [{LiCH(CH2CH2OMen)SO2Ph}4] ( 4a′ ) for which the structure was determined by single‐crystal X‐ray crystallography. Complex 4a′ crystallized in a tetrameric structure without any additional solvent molecules. There were found direct Li–C bonds (Li1–C1/Li2–C20 2.231(9)/2.236(9) Å). The tetrahedral donor set of Li is completed by three oxygen atoms. One oxygen atom comes from the OMen substituent via intramolecular coordination and two oxygen atoms come from SO2 groups of neighboured LiCH(CH2CH2OMen)SO2Ph moieties. Thus, a heterocubane structure with a Li4S4 core is built up.  相似文献   

5.
Preparation and Crystal Structure of the Tetramethylammonium Thiocyanate Sulfur Dioxide Adduct, (CH3)4N+SCN · SO2 Tetramethylammonium thiocyanate reacts with sulfur dioxide under formation of tetramethylammonium thiocyanate sulfur dioxide adduct. The resulting salt is characterised by NMR and vibrational spectroscopy and its crystal structure. (CH3)4N+SCN · SO2 crystallizes in the monoclinic space group P21/c with a = 578.4(1) pm, b = 1634.3(1) pm, c = 1054.6(1) pm, β = 105.17(1)°, and four formula units in the unit cell. The crystal structure possesses a strong S–S interaction between the NCS anion and the SO2 molecule. The NCS–SO2 distance of 301.02(9) pm is longer than a covalent single bond, thus the compound is rather described as an adduct. The structure is compared with ab initio calculated data.  相似文献   

6.

Electrophilic trisubstituted ethylene monomers, some ring‐substituted 2‐phenyl‐1,1‐dicyanoethylenes, RC6H4CH?C(CN)2 (where R is 3‐Br, 4‐CH3O; 5‐Br, 2‐CH3O; 4‐Cl, 3‐NO2; 5‐Cl, 2‐NO2; 2‐CN, 3‐CN, 4‐CN, and 4‐(CH3)2N), were synthesized by piperidine catalyzed Knoevenagel condensation of ring‐substituted benzaldehydes and malononitrile, and characterized by CHN elemental analysis, IR, 1H‐ and 13C‐NMR. Novel copolymers of the ethylenes and vinyl acetate were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator (ABCN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C‐NMR, GPC, DSC, and TGA. High T g of the copolymers, in comparison with that of polyvinyl acetate, indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. The gravimetric analysis indicated that the copolymers decompose in the 190–800°C range.  相似文献   

7.
Novel trisubstituted ethylenes, alkyl ring-substituted isopropyl 2-cyano-3-phenyl-2-propenoates, RPhCH = C(CN)CO2CH(CH3)2 (where R is H, 2-methyl, 3-methyl, 4-methyl, 4-ethyl, 4-propyl, 4-i-propyl, 4-butyl, 4-i-butyl, 4-t-butyl) were prepared and copolymerized with styrene. The ethylenes were synthesized by the piperidine catalyzed Knoevenagel condensation of ring-substituted benzaldehydes and isopropyl cyanoacetate, and characterized by CHN analysis, IR, 1H and 13C NMR. All the ethylenes were copolymerized with styrene in solution with radical initiation (ABCN) at 70°C. The compositions of the copolymers were calculated from nitrogen analysis and the structures were analyzed by FTIR, 1H and 13C NMR. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 250–500°C range with residue (2-5% wt.), which then decomposed in the 500–800°C range.  相似文献   

8.

Electrophilic trisubstituted ethylene monomers, alkyl and alkoxy ring‐disubstituted 2‐phenyl‐1,1‐dicyanoethylenes, RC6H3CH?C(CN)2 (where R is 2,4‐(CH3)2, 2,5‐(CH3)2, 2,3‐(CH3O)2, 2,4‐(CH3O)2, 2,5‐(CH3O)2, 3,4‐(CH3O)2, 3‐C2H5O‐4‐CH3O, 4‐CH3O‐3‐CH3), were synthesized by piperidine catalyzed Knoevenagel condensation of ring‐disubstituted benzaldehydes and malononitrile, and characterized by CHN elemental analysis, IR, 1H‐ and 13C‐NMR. Novel copolymers of the ethylenes and vinyl acetate were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator (ABCN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C‐NMR, GPC, DSC, and TGA. High T g of the copolymers, in comparison with that of polyvinyl acetate, indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. The gravimetric analysis indicated that the copolymers decompose in the 190–700°C range.  相似文献   

9.
Electrophilic trisubstituted ethylene monomers, some ring‐substituted 2‐phenyl‐1,1‐dicyanoethylenes, RC6H4CH?C(CN)2 (where R is 3‐C6H5O, 4‐C6H5O, 3‐C6H5CH2O, 4‐C6H5CH2O, 4‐CH3CO2, 4‐CH3CONH, 4‐(C2H5)2N) were synthesized by piperidine catalyzed Knoevenagel condensation of ring‐substituted benzaldehydes and malononitrile, and characterized by CHN elemental analysis, IR, 1H‐ and 13C‐NMR. Novel copolymers of the ethylenes and vinyl acetate were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator (ABCN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C‐NMR, GPC, DSC, and TGA. High T g of the copolymers, in comparison with that of polyvinyl acetate, indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. The gravimetric analysis indicated that the copolymers decompose in the 190–700°C range.  相似文献   

10.
A series of progression bands observed in the infrared spectra of nylon‐m/n and their model compounds have been interpreted in a new manner on the basis of simply coupled oscillator models of zigzag alkyl chains. Nylon‐m/n possesses the methylene sequences of (CH2)m and (CH2)n?2, and so the effective models of m and n ? 2 coupled oscillators, respectively, had previously been assumed for the methylene rocking–twisting mode, for example. However, the spectral patterns of progression bands predicted by this previously proposed model have been found to be inconsistent with those observed for many kinds of nylon samples with various m and n values. It is rather reasonable to assume that the effective numbers of oscillators should be m ? 2 and n ? 4 for the methylene rocking, twisting, and wagging modes of the (CH2)m and (CH2)n?2 sequences, respectively. In other words, the infrared progression bands observed for methylene local modes of nylon‐m/n may be interpreted reasonably with the data of n‐alkane molecules with the chemical formulae CH3(CH2)m?2CH3 and CH3(CH2)n?4CH3. For the C? C stretching modes, the equivalent n‐alkanes are CH3(CH2)m?1CH3 and CH3(CH2)n?3CH3, respectively. In the simply coupled oscillator model, the vibrational mode of one methylene group is represented by an oscillator, for example. Our new concept is to isolate the terminal oscillator adjacent to the amide group from the other oscillators in the inner parts of the methylene zigzag sequence. This corresponds to a physical situation in which the methylene group adjacent to the amide group shows a different vibrational behavior of larger amplitude than those of the inner methylene sequence, as supported by broad‐line NMR data and molecular dynamics calculations reported in the literature. Another possibility is a difference in the electron structure of the methylene unit adjacent to the amide group from that of the inner methylene sequence, resulting in a difference in the force constant and giving a vibrational decoupling between these two types of methylene units. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1294–1307, 2003  相似文献   

11.

Electrophilic trisubstituted ethylene monomers, ring‐substituted 2‐cyano‐N,N‐dimethyl‐3‐phenyl‐2‐propenamides, RC6H4CH?C(CN)CON(CH3)2 (where R is 3‐benzyloxy, 4‐benzyloxy, 3‐ethoxy‐4‐methoxy, 3‐bromo‐4‐methoxy, 5‐bromo‐2‐methoxy, 2‐chloro‐6‐fluoro) were synthesized by potassium hydroxide catalyzed Knoevenagel condensation of ring‐substituted benzaldehydes and N,N‐dimethyl cyanoacetamide, and characterized by CHN elemental analysis, IR, 1H‐ and 13C‐NMR. Novel copolymers of the ethylenes and styrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator, ABCN at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C NMR, GPC, DSC, and TGA. High Tg of the copolymers in comparison with that of polystyrene indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. The gravimetric analysis indicated that the copolymers decompose in the 300–450°C range.  相似文献   

12.
The dinuclear [NbCln(OR)(5‐n)]2 (n = 4, R = Et, 1 ; n = 4, R = CH2Ph, 2 ; n = 3, R = Et, 3 ; n = 2, R = Et, 4 ; n = 2, R = , 5 ), and [Nb(OEt)5]2, 6 , and the mononuclear niobium compounds NbCl42? OCH2CH(R′)OR] (R = Me, R′ = H, 7 ; R = Et, R′ = H, 8 ; R = CH2Cl, R′ = H, 9 ; R = CH2CH2OMe, R′ = H, 10 ; R = R′ = Me, 11 ), NbBr42? OCH2CH2OMe], 12 , and NbCl32? OCH2CH2OMe)(κ1? OCH2CH2OMe), 13 , were tested in ethylene polymerization. Optimized reaction conditions included the use of D‐MAO as co‐catalyst and chlorobenzene as solvent at 50 °C. Complex 7 , whose X‐Ray structure is described here for the first time, exhibited the highest activity ever reported for a niobium catalyst in alkene polymerization [151 kgpolymer × molNb?1 × h?1 × bar?1]. Compounds 1 , 3‐5 , 8 , 13 showed activities similar to that of 7 . Linear polyethylenes (characterized by FT‐IR, NMR, GPC, and DSC analyses) with a broad polydispersivity were obtained. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
We synthesized nitrosamines (R2N? NO) with R=iPr ( 1 ), nPr ( 2 ), nBu ( 3 ), and hydroxyethyl ( 4 ) from the amine using sodium nitrite/p‐toluenesulfonic acid in CH2Cl2. The rate of formation of 1 – 4 increases in the direction iPr<nPr<nBu2CH2OH. Compounds 1 – 3 were obtained as colorless solids, whereas 4 is a bright yellow liquid. Compounds 1 – 4 were characterized by elemental analysis, MS, IR, and multinuclear NMR (1H, 13C, and 15N) spectroscopies. Additionally, we measured the UV/Vis spectra of all compounds, which show maxima of absorption at approximately 221 nm and molar extinction coefficients between 3043 and 4859 L mol?1 cm?1. We calculated the optimized structures of 1 – 4 (B3LYP/6‐311+G(d,p)) and computed the NMR spectroscopic chemical shifts and infrared frequencies. Furthermore, we carried out a natural bond orbital (NBO) analysis of the nitrosamine moiety. Lastly, the compounds described in this work are valuable starting materials for the synthesis of 2‐tetrazenes with potential interest to replace highly toxic hydrazines in rocket propulsion.  相似文献   

14.

Electrophilic trisubstituted ethylene monomers, alkoxy ring‐substituted 2‐cyano‐N,N‐dimethyl‐3‐phenyl‐2‐propenamides, RC6H4CH?C(CN)CON(CH3)2 (where R is 2‐OCH3, 3‐OCH3, 4‐OCH3, 2‐OCH2CH3, 3‐OCH2CH3, 4‐OCH2CH2CH3, 4‐OCH2CH2CH2CH3), were synthesized by potassium hydroxide catalyzed Knoevenagel condensation of ring‐substituted benzaldehydes and N,N‐dimethyl cyanoacetamide, and characterized by CHN elemental analysis, IR, 1H‐ and 13C‐NMR. Novel copolymers of the ethylenes and styrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator, ACBN at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C NMR, GPC, DSC, and TGA. High Tg of the copolymers in comparison with that of polystyrene indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. The gravimetric analysis indicated that the copolymers decompose in the 300–450°C range.  相似文献   

15.
Electrophilic trisubstituted ethylene monomers, halogen ring‐substituted 2‐cyano‐N,N‐dimethyl‐3‐phenyl‐2‐propenamides, RC6H4CH [dbnd]C(CN)CON(CH3)2 (where R is 2‐Br, 3‐Br, 4‐Br, 2‐Cl, 3‐Cl, 4‐Cl, 2‐F, 3‐F, 4‐F), were synthesized by potassium hydroxide catalyzed Knoevenagel condensation of ring‐substituted benzaldehydes and N,N‐dimethyl cyanoacetamide, and characterized by CHN elemental analysis, IR, 1H‐ and 13C‐NMR. Novel copolymers of the ethylenes and styrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator, ABCN at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C NMR, GPC, DSC, and TGA. High T g of the copolymers in comparison with that of polystyrene indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. The gravimetric analysis indicated that the copolymers decompose in the 300–450°C range.  相似文献   

16.
The radiation-induced copolymerization of ethylene and sulfur dioxide has been studied in the liquid and gas phases. In the liquid phase, the copolymer composition remained equimolar over a temperature range of 20–160°C. and ethylene pressures of 50–680 atm. The rate of copolymerization in the liquid phase at 680 atm. increased with temperature to a maximum value at ~80°C. Above this temperature the rate steadily decreased to zero at 157°C. because of temperature-dependent depropagation reactions. In the gas phase, copolymers were formed that contained from 9 to 46 mole-% sulfur dioxide. Under constant conditions of temperature, pressure, and radiation intensity, the copolymerization rate in the gas phase increased with increasing sulfur dioxide in the initial gas mixture. The propagating species for the liquid-phase experiments is considered to consist of an equimolar complex molecule of ethylene and sulfur dioxide. For gas mixtures containing an excess molar concentration of ethylene, the propagating species are ethylene and the complex molecule. Infrared spectra show polysulfone structures. Calorimetric and x-ray diffraction analyses indicate crystalline structures for copolymers in the range 9–50 mole-% sulfur dioxide, although a melt transition temperature could not be observed for copolymer containing >31 mole-% sulfur dioxide. Clear uniform film was obtained with copolymers containing up to 31 mole-% SO2.  相似文献   

17.
Poly(vinyl chloride) pendant with polysulfide (PS–PVC) having various degrees of substitution, various S substituents, and various numbers of atoms in the sulfur chain has been synthesized by the reaction of poly(vinyl chloride) with a thiol, sulfur, and triethylamine in dimethylformamide at 30°C for 0.4–5 hr. The photocrosslinking reaction has been investigated under ultraviolet irradiation at 250–450 mμ. The photocrosslinking reaction of PS–PVC is influenced by the degree of substitution, the nature of the S substituent, and the number of atoms in the sulfur chain. The degree of photocrosslinking r increased in the order, n-C4H9? < n-C8H17? < C6H5CH2? < i-C3H7? < t-C4H9? . On the photocrosslinking of PS–PVC having two different S substituents, r increases in the similar order for aliphatic substituents and in the order NO2C6H4? < ClC6H4? < C6H5CH2? < CH3C6H4? < t-C4H9C6H4? < C6H5? for the aromatic substituents. Further, r increases markedly with the increase of sulfur chain number for all PS–PVC. The chemical structure of the crosslinks and the crosslinking mechanism are discussed on the basis of the results.  相似文献   

18.

Electrophilic trisubstituted ethylene monomers, ring‐substituted 2‐cyano‐N,N‐dimethyl‐3‐phenyl‐2‐propenamides, RC6H4CH?C(CN)CON(CH3)2 (where R is 4‐(CH3)2N, 4‐CH3CO2, 4‐CH3CONH, 2‐CN, 3‐CN, 4‐CN, 4‐(C2H5)2N) were synthesized by potassium hydroxide catalyzed Knoevenagel condensation of ring‐substituted benzaldehydes and N,N‐dimethyl cyanoacetamide, and characterized by CHN elemental analysis, IR, 1H‐ and 13C‐NMR. Novel copolymers of the ethylenes and styrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator, ABCN at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C NMR, GPC, DSC, and TGA. High Tg of the copolymers in comparison with that of polystyrene indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. The gravimetric analysis indicated that the copolymers decompose in the 300–450°C range.  相似文献   

19.
Three series of polyamides were prepared from diamines (hexamethylenediamine, bis-5-aminoamyl ether, p-xylylenediamine) and α,ω-oxaalkanedioic acids of formula HOOC(CH2)mO(CH2)nCOOH, where m = n = 3–10, in symmetric structures, but m = 3 or 4 in unsymmetric structures. The melting points of these polymers were plotted against the number of carbon atoms of the oxaalkylene groups. The melting points of polymers from each diamine fell on three different curves according to the structures of the dicarboxylic acids: symmetric ? (CH2)nO(CH2)n? ; unsymmetric ? (CH2)3O(CH2)n? , and unsymmetric ? (CH2)4O(CH2)n? . A minimum melting point is observed at about the same point of the acid structure in every curve of the unsymmetric dicarboxylic acids. The marked depression in the polymer melting points around the minimum point is attributed to the increase of the entropy of fusion.  相似文献   

20.
A conductometric system with a multipumping module and a gas-diffusion cell has been developed to determine free and total sulfur dioxide (SO2) in wine. The developed method has two protocols to determine both types of SO2 using the same system. For free SO2, sulfite is converted to H2SO4 by acidification and diffusion with H2O2 in an acceptor channel. The sample was previously hydrolyzed by mixing the sample with NaOH and heated at 70?°C prior making the determination of total SO2 in order to break the bonds of the combined SO2. Free and total SO2 were determined in the ranges of 2.5–25.4 and 10.2–76.2?mg L?1 with a sample throughput of 13 and 12?h?1, respectively. The calibration curves of free and total SO2 were in the range of ΔG (mS cm?1)?=?(–1.0242?±?0.2871)?+?(0.6613?±?0.0201) [SO2, mg L?1], r2 of 0.997 and ΔG (mS cm?1)?=?(–0.5850?±?0.1678)?+?(0.1236?±?0.0033) [SO2, mg L?1], r2 of 0.997. The proposed automated method is simple and easy to apply for the determination of SO2 in wine using simple reagents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号