首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The thermal decomposition of 1,1,1-trifluoro-2-chloroethane has been investigated in the single-pulse shock tube between 1120° and 1300deg;K at total reflected shock pressures from ~2610 to 3350 torr. Under these conditions, the major reaction is the α,α-elimination of hydrogen chloride, with The decomposition also involves the slower α,β-elimination of hydrogen fluoride, with the first-order rate constant given by At temperatures above 1270°K, two additional minor products were observed. These were identified as CF2CFCl and CF3CHCl2 and suggest C? Cl rupture as a third reaction channel leading to complicated kinetics.  相似文献   

2.
The kinetics of the gas-phase reaction of 2,2,2-trifluoroethyl iodide with hydrogen iodide has been studied over the temperature range of 525°K to 602°K and a tenfold variation in the ratio of CF3CH2I/HI. The experimental results are in good agreement with the expected free radical-mechanism: An analysis of the kinetic data yield: where θ =2.303RT in kcal/mol. If these results are combined with the assumption that E2 = 0 ± 1 kcal/mol, then one obtains DH (CF3CH2? I) = 56.3 kcal/mol. This result may be compared with DH(CH3CH2? I) = 52.9 kcal/mol and suggests that substitution of three fluorines for hydrogen in the beta position strengthens the C? I bond slightly.  相似文献   

3.
3,3-Dimethylbutanol-2 (3,3-DMB-ol-2) and 2,3-dimethylbutanol-2 (2,3-DMB-ol-2) have been decomposed in comparative-rate single-pulse shock-tube experiments. The mechanisms of the decompositions are The rate expressions are They lead to D(iC3H7? H) – D((CH3)2(OH) C? H) = 8.3 kJ and D(C2H5? H) – D(CH3(OH) CH? H) = 24.2 kJ. These data, in conjunction with reasonable assumptions, give and The rate expressions for the decomposition of 2,3-DMB-1 and 3,3-DMB-1 are and   相似文献   

4.
The kinetics of the thermal reaction between CF3OF and C3F6 have been investigated between 20 and 75°C. It is a homogeneous chain reaction of moderate length where the main product is a mixture of the two isomers 1-C3F7OCF3 (68%) and 2-C3F7OCF3 (32%). Equimolecular amounts of CF3OOF3 and C6F14 are formed in much smaller quantities. Inert gases and the reaction products have no influence on the reaction, whereas only small amounts of oxygen change the course of reaction and larger amounts produce explosions. The rate of reaction can be represented by eq. (I): The following mechanism explains the experimental results: Reaction (5) can be replaced by reactions (5a) and (5b), without changing the result: Reaction (4) is possibly a two-step reaction: For ∣CF3 = ∣C3F6∣, ν20°C = 36.8, ν50°C = 24.0, and ν70°C = 14.2.  相似文献   

5.
The kinetics of the thermal decomposition of CF3O3CF3 has been investigated in the pressure range of 15–599 torr at temperatures between 59.8 and 90.3°C and also in the presence of CO between 42 and 7°C. The reaction is homogeneous. In the absence of CO the only reaction products are CF3O2CF3 and O2. The rate of reaction is strictly proportional to the trioxide pressure, and is not affected by the total pressure, the presence of inert gases, and oxygen. The following mechanism explains the experimental results: In the presence of CO there appear CO2, (CF3OCO)2, and CF3O2C(O)OCF3 as products. With increasing temperature the amount of peroxicarbonate decreases, while the amounts of oxalate and CO2 increase. The rate of decomposition of the trioxide above a limiting pressure of about 10 torr CO is strictly first order and independent of CO pressure, total pressure, and the pressure of the products. The addition of larger amounts of O2 to the CO containing system chaqnges the course of the reaction.  相似文献   

6.
The kinetics of the thermal bromination reaction have been studied in the range of 173–321°C. For the step we obtain where θ=2.303RT cal/mole. From the activation energy for reaction (11), we calculate that This is compared with previously published values of D(CF3?I). The relevance of the result to published work on kc for a combination of CF3 radicals is discussed.  相似文献   

7.
Rate constants have been determined at (298 ± 4) K for the reactions: and the relaxation processes: Time-resolved HF(1,0) emission was observed following the photolysis of F2 with pulses from an excimer laser operating on XeCl (λ = 308 nm). Analysis of the emission traces gave first-order constants for reaction and relaxation, and their dependence on [H2O] and [HCN] yielded:   相似文献   

8.
The kinetics of the gamma-radiation-induced free radical chain reaction in solutions of C2Cl3F in cyclohexane (RH) was investigated over a temperature range of 87.5–200°C. The following rate constants and rate constant ratios were determined for the reactions: In competitive experiments in ternary solutions of C2Cl4 and C2Cl3F in cyclohexane the rate constant ratio k2c/k2a was determined By comparing with previous data for the addition of cyclohexyl radicals to other chloroethylenes it is shown that in certain cases the trends in activation energies for cyclohexyl radical addition can be correlated with the C? Cl bond dissociation energies in the adduct radicals.  相似文献   

9.
Cyclopentane has been decomposed in comparative-rate single-pulse shock-tube experiments. The pyrolytic mechanism involves isomerization to 1-pentene and also a minor pathway leading to cyclopropane and ethylene. This is followed by the decomposition of 1-pentene and cyclopropane. The rate expressions over the temperature range of 1000°–1200° K are Details of the cyclopentane decomposition processes are considered, and it appears that if the trimethylene radical is an intermediate, then ΔHf(trimethylene) ≤ 280 kJ/mol at 300°K.  相似文献   

10.
The kinetics of the gas-phase thermal reaction between CF2(OF)2 and CO has been studied in a static system at temperatures ranging between 110 and 140°C. The only reaction products were CF2O and CO2, giving the following stoichiometry: The reaction is homogeneous. The rate is strictly second order in CF2(OF)2 and CO, and is not affected by the total pressure or by the presence of reaction products. Oxygen promotes a sensitized oxidation of CO and inhibits the formation of CF2O. The experimental results in the absence of oxygen can be explained by a chain mechanism similar to that proposed for the reaction between F2O and CO with an overall rate constant of From the experimental data obtained on the oxygen-inhibited reaction, the rate constant for the primary process can be calculated: The chain length v = 2.5 is independent of the temperature. Taking for collision diameters σ = 6 Å and σCO = 3.74 Å, a value α = 5.3 × 10?3 for the steric factor is obtained.  相似文献   

11.
The overall reaction (1) occurs readily in the gas phase, even at room temperature in the dark. The reaction is much faster than the corresponding process and does not involve the normal bromination mechanism for gas phase reactions. Reaction (1) is probably heterogeneous although other mechanisms cannot be excluded. The overall reactions (1) (2) proceed, for all practical purposes, completely to the right-hand side in the vapor phase. The expected mechanism is (3) (4) (5) (6) (7) where reaction (3) is initiated thermally or photochemically. Reaction (4) is of interest because little kinetic data are available on reactions involving abstraction of halogen by halogen and also because an accurate determination of the activation energy E4 would prmit us to calculate an acccurate value of the bond dissociation energy D(CH3? I).  相似文献   

12.
The reactions where Y = CH3 (M), C2H5 (E), i? C3H7 (I), and t? C4H9 (T) have been studied between 488 and 606 K. The pressures of CHD ranged from 16 to 124 torr and those of YE from 57 to 625 torr. These reactions are homogeneous and first order with respect to each reagent. The rate constants (in L/mol·s) are given by The Arrhenius parameters are used as a test for a biradical mechanism and to discuss the endo selectivity of the reactions.  相似文献   

13.
The kinetics of the gas phase reaction between NO2 and CF2CCl2 has been investigated in the temperature range from 50 to 80°C. The reaction is homogeneous. Three products are formed: O2NCF2CCl2NO2 and equimolecular amounts of CINO and of O2NCF2C(O)Cl. The rate of consumption of the reactants is independent of the total pressure, the reaction products, and added inert gases and can be represented by a second-order reaction: However, the distribution of the products is influenced by the pressure of the present gases, which favor the formation of the dinitro-compound in a specific way. The effect of CF2CCl2 is the greatest. In the absence of added gases, the ratio of O2NCF2CCl2NO2 to that of O2NCF2C(O)Cl is proportional to (CF2CCl2 + γP products). The experimental results can be explaned by the following mechanism: P and X represent the products and the added gases:   相似文献   

14.
The reactions have been studied competitively in the vapor phase over the range of 52–204°C. The i-C3F7 radicals were generated by means of the reaction It was found that where θ = 2.303RT J/mol. Absolute Arrhenius parameters are derived for the reactions where R = CF3, C2F5, and i-C3F7.  相似文献   

15.
The flash photolysis of biacetyl produces CO, C2H6, and CH3COCH3 as main products, and in small amounts CO2, C2H4, and CH3CHO. The rate constants of reactions (2) and (3) of thermally equilibrated radicals were calculated from the amounts of products: .  相似文献   

16.
The kinetics of the gas-phase thermal isomerization between trans- and cis-1,2-bis(trifluoromethyl)-1,2,3,3-tetrafluorocyclopropane as well as their decomposition to trans- and cis-perfluoro-2-butene, respectively, and CF2, was studied in the temperature range of 473–533°K, with an initial pressure of reactant of 1.5 to 7.0 Torr. Some runs were also made with the addition of SF6 as an inert gas up to a total pressure of 100 Torr. The reactions are first order and homogeneous. The rate constants for the geometrical isomerization fit the following Arrhenius relations: and the corresponding equations for the decomposition of the trans and cis-cyclopropane are .  相似文献   

17.
1,1,2,2-Tetramethylcyclopropane (TTMC) has been decomposed in a single-pulse shock tube. The main reaction process is Side reactions are unimportant. From comparative rate experiments (with cyclohexene decomposition as standard) the rate expression for these reactions are These numbers are consistent with a «best» value for cyclohexene decomposition of   相似文献   

18.
A method is described for the measurement of relative rate constants for abstraction of hydrogen from ethylene at temperatures in the region of 750 K. The method is based on the effect of the addition of small quantities of propane and isobutane on the rates of formation of products in the thermal chain reactions of ethylene. On the assumption that methane and ethane are formed by the following reactions, (1) measurements of the ratio of the rates of formation of methane and ethane in the presence and absence of the additive gave the following results: Values for k2 and k3 obtained from these ratios are compared with previous measurements.  相似文献   

19.
Chloroethanes react with aqueous caustic to yield either elimination or substitution products. The reaction rates were measured for the dichloroethanes, trichloroethanes, tetrachloroethanes, and pentachloroethane between 283 and 353°K. The constants of HCl eleminations referring to the rate equation are given by all rate constants being in 1./mole·s and R in cal/mole· deg. With ethyl chloride, 1,1-dichloroethane, and 1,1,l-trichloroethane, the elimination is not observed and a slow substitution takes place. The influence of chlorine substituents on both sides of the molecule on mechanism and rate parameters is discussed.  相似文献   

20.
Mixtures of up to 14% azomethane in propane have been photolyzed using mainly 366 nm radiation in the ranges of 323–453 K and 25–200 torr. Detailed measurements were made of the yields of nitrogen, methane, and ethane. Other products observed were isobutane, n-butane, ethene, and propene. A detailed mechanism is proposed and shown to account for the observed variation of product yields with experimental conditions. The quantum yield of the molecular process is found to be given by the temperature-independent equation The values of rate constants obtained are where the reactions are and it is assumed that the rate constant for the reaction is given by   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号