首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以香根草作为研究材料,选取江铜贵冶周边土壤修复示范基地的香根草植株,利用其能富集重金属铅的特性,运用拉曼光谱结合树脂吸附技术检测Pb的含量。D401树脂功能基-N(CH2COOH)2中的N和O原子与金属离子发生配位能形成稳定化合物,从而富集香根草消煮溶液中的重金属Pb2+,然后用重金属分析仪(HM-5000P)测定铅含量。D401树脂和金属离子所形成的络合物有一定的拉曼信号,检测络合物的拉曼信号,运用拉曼光谱技术,对吸附重金属后树脂内Pb含量进行间接定量分析,建立数学检测模型。对比不同预处理方法对数据定量模型的影响,使用多种预处理方法结合偏最小二乘法建立最优的香根草根部重金属铅含量的定量分析模型。经过卷积平滑结合一阶微分预处理后其预测相关决定系数Rp为0.854,预测均方根误差RMSEP为5.658%,建模结果较理想。研究表明,基于拉曼光谱技术结合D401树脂吸附技术定量检测香根草根部重金属铅含量具有可行性,该研究对环境中重金属含量评估有一定的指导意义。  相似文献   

2.
《X射线光谱测定》2003,32(2):129-138
A risk assessment study of the air quality in the surrounding of roads covered with slags coming from the non‐ferrous metal industry was performed. A monitoring campaign was carried out at three locations in Flanders by collecting the PM10 fraction and the total suspended particulates (TSP) of the airborne dust particles, entrapping heavy metals, on membrane filters. The heavy metal concentration on the dust filters was determined by wavelength‐dispersive x‐ray fluorescence (WD‐XRF) spectrometry. The XRF calibration curves were set up with filter standards prepared in the laboratory using an aerosol‐generated loading system. The acquired WD‐XRF results were confirmed by inductively coupled plasma atomic emission spectrometric (ICP‐AES) measurements after acid digestion on a selected number of filters. Electron probe microanalysis (EPMA) confirmed that aerosol‐loaded filter standards and dust filters with a concentration level of the analyzed element below 3300 ng cm?2 were homogeneously distributed. Dust filters with higher concentrations, and especially filters loaded with the TSP fraction, reflected an inhomogeneous distribution of the analyzed element on the filter. The WD‐XRF analytical results acquired in the monitoring campaign revealed that the concentration of Pb on the dust filters never exceeded the immission standard (yearly average) of 2000 ng m?3. It can be stated that the impact on human health is limited and can still be reduced by covering the polluted roads with a layer of asphalt. Further evaluation of soil and water samples from the nearby surroundings reveals that the heavy metal content in the slags makes an important contribution to environmental pollution, especially the contamination of groundwater. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
Abstract

Atomic spectrometry and atomic mass spectrometric (MS) techniques have been playing crucial roles in the field of biosciences. They detect elements with relatively high sensitivities and are thus applicable to a wide range of analytical targets. In the past decade, determination of bio-relevant metallic elements continues to be of interest, while particularly noteworthy are methods developed for small molecules, peptides, proteins, nucleic acids and even cells that well exploited the bio-analytical strengths of atomic spectrometry and atomic MS, either in a direct or indirect manner. Quantitation, as well as speciation and imaging analyses are all involved. The present review aims to assimilate recent advances in bio-analysis utilizing atomic spectrometry and atomic MS, primarily covering the period of 2013–2018, in an attempt to provide readers insight into the developing trends of this research frontier. Followed by concluding remarks and perspectives, the applications are divided into the following four catalogs: (i) toxicologically important metal-containing species, with an emphasis on quantitative and imaging analysis; (ii) quantitation of biomolecules using naturally occurring heteroatoms; (iii) exogenous metal ion or nanoparticle tagging-based strategies in bioassays; and (iv) label-free detection of biomolecules.  相似文献   

4.
Abstract

Displacement reactions are very popular in nature, ranging from texbook knowledge of the Zn-CuSO4 system to modern functional nucleic acid–involved metal ion displacement. Though synthetic chemistry harvests a lot from displacement reactions, analytical chemistry benefits greatly from various displacement reaction strategies, such as sensitivity improvement. In particular, the use of indicator displacement assay for new sensor development is of great interest worldwide. In this review, we summarize the advances in utilization of displacement reactions for improved spectrometric analysis. The main contents include displacement-based preconcentration schemes for trace metal analysis by analytical atomic spectrometry, indicator displacement assays focusing on the use of advanced nanomaterials, and displacement immunoassays using spectrometric measurements, with 117 references.  相似文献   

5.
Abstract: Periodic publications have been published that address advances in evolved gas analysis techniques, because the correct interpretation for the mechanism of a thermally induced reaction, involving the formation of gaseous species, is strongly dependent on the characterization of the evolved products.

When the nature of volatile products released by a substance subjected to a controlled-temperature program are online determined, the results allow one to prove a supposed reaction, either under isothermal or under heating conditions.

Very recent analytical applications of evolved gas analysis performed by mass spectrometry, selected among those published in 2012 and 2013, are collected in this review.  相似文献   

6.
Abstract

The electrolyte cathode atmospheric glow discharge (ELCAD) invented in 1992 is a new optical emission source with upcoming application in the field of environmental protection as an outstanding instrument for monitoring the toxic heavy metal content of waters and wastewaters. The main operating parameters, mechanisms (secondary electron emission from the electrolyte cathode, self‐sustaining processes in the cathode dark space, dependence of the emitted line intensities on the discharge parameters, temperatures), and the analytical performance of this special discharge are presented through a critical review using the papers related to the ELCAD published from 1993 to 2006.  相似文献   

7.

The field of chemosensing has been experiencing an exponential expansion in recent times, due to increased demands for simpler and user-friendly analytical techniques, in order to combat and confront the challenges of industrial pollutions in the twenty-first century. Metal complex-based chemosensors have received little attention while exhibiting excellent sensing properties, comparing to their organic counterparts. Thus, a thiosemicarbazone-based (H) and its cadmium complex (P) were synthesized, characterized and their photophysical and chemosensing properties were investigated in DMF solvent. The addition of molar equivalents of selected cations (of nitrates or chloride salts) to H and P, produced visually detectable colour changes as well as remarkable spectral shifts. Explicitly, the two probes (H and P) were able to collectively discriminate heavy metal cations such as Cd2+, Co2+, Zn2+, Cu2+, Ni2+, and Ag+, both in DMF, among all other heavy metal cations tested. None of the anions could be detected by H or P, even when the tetrabutylammonium salts (TBAs) were used, the action presumably ascribed to the solvent effect. Thus, H and P can be used to selectively and sensitively detect the presence of heavy metal cations, via naked-eye detectable colour changes in an aqueous soluble solvent such as DMF.

  相似文献   

8.
The binding of representative alkali, alkaline earth, transition and heavy metal cations by 2‐pyridylmethoxy derivatives (1b, in cone and partial cone conformations) of p‐tert‐butylhexahomotrioxacalix[3]arene was studied. Binding was assessed by extraction studies of the metal picrates from water into dichloromethane and by stability constant measurements in acetonitrile and methanol, using spectrophotometric and potentiometric techniques. Microcalorimetric studies of some selected complexes in acetonitrile were performed, as well as proton NMR titrations. Computational methods (density functional theory calculations) were also employed to complement the NMR data. The results are compared with those obtained with the dihomooxacalix[4]arene 2b and the calix[4]arene 3b derivative analogues. Partial cone‐1b is the best extractant for transition and heavy metal cations. Both conformers of 1b exhibit very high stability constants for soft and intermediate cations Pb2+, Cd2+, Hg2+, Zn2+ and Ni2+, with cone‐1b the strongest binder (ML, log β ≥ 7) and partial cone‐1b the most selective. Both derivatives show a slight preference for Na+. Besides the formation of ML complexes, ML2 and M2L species were also observed. The former complexes were, in general, formed with the transition and heavy metal cations, whereas the latter were obtained with Ag+ and Hg2+ and partial cone‐1b. In most cases, these species were corroborated by the proton NMR and density functional theory studies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Abstract

Cloud point extraction is a separation and preconcentration procedure that has been extensively applied for trace metal determination in several different matrices. Its major advantages are simple experimental procedures, low cost, high preconcentration factors, and environmental safety. These aspects include it in a set of analytical methods in agreement with the “green chemistry” principles. The surfactants characteristics and the process of micelle formation are outlined for a better understanding of the technique. After general considerations about the cloud point extraction basis and its extraction mechanism for metal chelates are considered, selected spectroanalytical techniques and their application for analysis of the micellar phase are discussed. The micellar extraction in metal speciation analysis, the on‐line incorporation of cloud point extraction to flow injection analysis, and coupling with capillary electrophoresis are described.  相似文献   

10.
Abstract

This review aims to provide a critical overview of automated flow injection and sequential injection liquid-liquid extraction for preconcentration and/or separation of ultra-trace metal and metalloid species hyphenated with atomic spectrometric detection systems, including some new trends and applications in the subbranches of cloud point extraction (CPE), wetting film extraction (WFE), supported liquid membrane extraction (SLME), extraction chromatography (EChr), and liquid-phase microextraction (LPME) techniques. The analytical performance of flow-injection/sequential injection liquid-liquid extraction methods is markedly affected by the components of the flow network such as segmentor, extraction coil, and phase separator. Thus, an overall presentation of system components along with some novel strategies for interface with atomic spectrometers is discussed and exemplified with selected applications.  相似文献   

11.
矿业废弃地重构土壤重金属含量高光谱反演   总被引:3,自引:0,他引:3  
矿产资源对工业和国民经济的发展有重要的作用,但是随着矿业开采规模的扩大,资源枯竭、经营不善而形成的矿业废弃地越来越多。由于长时间受到采矿的影响,矿业废弃地土壤中存在大量的重金属元素,高浓度重金属可能会对环境和人体产生影响。土地复垦是整治污染、退化土壤再利用的重要方法,对重构后的土壤进行重金属含量检测是衡量土地复垦成效的重要指标,需要长期进行跟踪监测。传统的化学检测方法效率低、成本高、无法实现重金属大范围检测。高光谱是一种新兴的、发展潜力巨大的技术,在环境保护,资源利用,区域可持续发展等方面有着广泛的应用。经过近几十年的快速发展,仪器精度逐渐提高,检测方法逐渐成熟,为实现土壤重金属高效、便捷检测提供了可能。正常土壤重金属含量一般相对较低,采用光谱测量重金属含量较为困难,但铁矿开采区矿业废弃地由于土壤中的铁元素较多,会使土壤中的重金属的存在和聚集形式发生变化,影响重金属对光谱的响应,从而使土壤光谱反射率与重金属含量之间关系更加明显。以湖北省大冶市复垦矿区研究区,采样化学检测方法获取土壤重金属(As,Cr,Zn)含量;借助于美国ASD公司生产的FieldSpec4地物光谱仪(350~2 500 nm)获取土壤反射率,应用一阶微分、倒数对数、连续统去除法分别对反射率曲线进行预处理,提取出光谱特征波段,分析三种重金属元素与光谱特征间的相关性并建立逐步回归模型。研究表明,光谱数据预处理可使光谱特征波段更加明显,其中一阶微分和连续统去除法的效果最为明显。3种重金属元素的特征波段为495,545,675,995,1 425,1 505,1 935,2 165,2 205,2 275和2 355 nm。将土壤重金属含量与光谱特征波段之间做相关性分析,三种重金属都表现出了与光谱曲线的相关性,相关系数大部分都达到了0.5以上,最大相关系数为0.663,由于重金属种类和预处理方式的不同会导致相关性系数存在明显的差异。利用与土壤重金属相关性最大的特征波段建立三种重金属反演模型,并以反演模型r大小选择每种重金属的最优反演模型。由于重金属种类的不同,模型的选择也有差异,Cr和Zn一阶微分逐步回归为最佳反演模型,重金属As连续统去除法逐步回归为最佳反演模型。通过检验,三种重金属中Cr反演效果最好,RMSE为2.67,其次是Zn和As。对比当前不同检测手段可知,基于土样和光谱数据预处理的土壤重金属含量地物光谱仪高光谱反演是比较理想的。可为矿业废弃地土壤重金属高光谱反演提供参考。  相似文献   

12.
导数原子光谱分析新技术研究进展   总被引:4,自引:0,他引:4  
本文评介了导数测量技术在原子光谱分析中的应用研究进展。介绍了常规原子光谱信号模型及其原子光谱信号的导数模型;讨论了原子发射光谱和原子吸收光谱分析导数测量新技术原理及其分析特性。介绍了导数原子光谱技术在生物样品、环境样品、药物分析、食品饮料、金属及合金样品痕量金属元素分析中的应用。基于信号强度随时间变化的新型导数原子光谱分析新技术较常规原子光谱分析,其灵敏度和基线稳定性显著提高、检出限明显改善,在痕量和超痕量金属元素分析领域有着广阔的应用前景。  相似文献   

13.
《应用光谱学评论》2013,48(4):475-507
Abstract

The application of metal (tantalum, molybdenum, and platinum) devices in analytical atomic spectrometry is reviewed in this article. These metal devices have been employed in various analytical atomic spectrometric techniques for more than three decades, mainly as electrothermal atomizers or electrothermal vaporizers, in various physical shapes, such as tubes, platforms, loops, and wires (or coils/filaments). Their application spans from atomic absorption spectrometry (AAS), atomic emission spectrometry (AES) atomic fluorescence spectrometry (AFS), inductively coupled plasma atomic emission spectrometry (ICP‐AES) to inductively coupled plasma mass spectrometry (ICP‐MS). The analytical figures of merit and the practical applications reported for these metal devices are reviewed, and the atomization mechanism on these metal atomizers is briefly summarized, too. In addition, other applications of the metal devices are discussed, including analyte preconcentration by electrodeposition and sequential metal vapor elution analysis (SMVEA). Furthermore, the application of these metals in graphite furnaces encompasses the schemes with the metals in the form of furnace linings, platforms, or impregnated salts.  相似文献   

14.
15.
Abstract: The study of the ionome (ionomics) is defined as quantitative and simultaneous measurement of the element composition of living organisms and changes in this composition in response to physiological stimuli, development stage, and genetic modifications (Salt et al., Ann. Rev. Plant Biol., Vol. 59, 2008). The necessity of understanding the regulation processes of elements in the organisms demands determination of many elements in the organism, tissue, and cell (Baxter, Plant Biol., Vol. 12, 2009). A prospect for ionomics is environmental pollution where great variety of conditions and pollutants exist resulting in concentration and interelemental changes in the plant ionome. The capabilities of and problems with several multielement analytical techniques, including instrumental neutron activation analysis (INAA), X-ray fluorescence, inductively coupled plasma–atomic emission spectrometry (ICP-AES), inductively coupled plasma–mass spectrometry (ICP-MS), and atomic absorption spectrometry (AAS), which are adequate and most promising in ionomic and environmental studies of plants, are reviewed. References are confined mainly to the last 10–15 years. Information about concentrations, roles, binding forms, and pollution sources of the elements and comparison between methods with respect to limits of detection, determined elements, interferences, and economic considerations are tabulated. Some combinations of instrumental techniques supplementing each other are highly valued, namely, ICP-MS and ICP-AES and INAA and AAS or ICP-AES.  相似文献   

16.
17.
植物精油是从芳香植物提取的天然复杂化合物,作为芳香植物的次生代谢产物具有挥发性和浓郁香味,其特有的多样化生物活性广泛应用于医药和化妆品行业.植物精油具有高渗透性,能以活跃的分子态渗透皮肤组织,经淋巴腺吸收后进入血液,其所含的重金属元素也极易随植物精油进入人体对健康构成潜在威胁.采用硝酸-双氧水对植物精油进行微波消解,在...  相似文献   

18.
Abstract

The contributions of Hubert Ziegler to our understanding of physiological plant ecology through natural abundance studies of the stable isotopes of carbon, hydrogen and nitrogen are reviewed. These have served to expand our knowledge of plant distributions and physiological functions, especially the processes linking pathways of photosynthetic carbon metabolism and transpiration. They have also served to indicate food chain relationships and organism to organism interactions. His leadership has placed stable isotope techniques firmly on centre-stage, as indicators and integrators of plant biospheric processes in the environmental context.  相似文献   

19.
About 21 years after the Chernobyl accident, 137Cs and 40K activity concentration measurements using gamma-ray spectroscopy and elemental analysis using energy dispersive X-ray spectroscopy were performed in five different lichen species collected from the Giresun province of northeastern Turkey. Being a symbiosis of algae and fungi, lichens are mostly used for environmental measurements since the fungal partner is responsible for the uptake of necessary nutrients or harmful substances, such as heavy metals of radionuclides. The gamma activity results showed that 137Cs, an artificial radionuclide released from the Chernobyl power plant accident, is still eminent in the environment of the province. The mean activity concentrations of 137Cs and 40K ranged from 24 to 254 with the mean value of 102 Bq kg?1 and from 345 to 2103 with the mean value of 1143 Bq kg?1 in dry weight. The results of the elemental analyses showed potassium, calcium, titanium, iron, tin, and barium in different concentrations.  相似文献   

20.
ABSTRACT

In this work, a novel displacement solidified floating organic drop microextraction (D-SFODME) technique was developed and coupled with electrothermal atomic absorption spectrometry (ETAAS) for the determination of trace silver in water samples without need of any masking agents. The method involved the formation of copper diethyldithiocarbamate (Cu–DDTC), extracted from the resultant Cu–DDTC with SFODME procedure using 1-undecanol. Then, the solidified floating organic drop was transferred into a sample solution containing silver ion, and another SFODME procedure was carried out. Trace Ag+ was selectively preconcentrated using 1-undecanol through a displacement reaction between Ag+ and the preconcentrated Cu-DDTC and the floating organic drop was diluted by ethanol for ETAAS detection. Interferences from coexisting heavy metal ions with lower stability of their DDTC complexes relative to Cu-DDTC were minimized. Under the optimal conditions, the limit of detection was 4.7 ng L?1 (3σ) for silver with a sample volume of 5.0 mL, and an enrichment factor of 250 was achieved. The relative standard deviation under optimum conditions is 3.6% (n = 7). The proposed method was successfully applied to determine trace silver in some environmental samples with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号