首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel synthetic strategy for the synthesis of graft copolymers is reported. Block copolymers containing segments with stable nitroxyl radicals side groups were first prepared by anionic polymerization, which were then used as a precursor for the subsequent nitroxide-mediated radical polymerization (NMRP) of styrene. This way, block–graft copolymers with polystyrene side chains grafted from one of the blocks were successfully synthesized in a controlled manner. In addition, block–graft copolymers with grafted polystyrene chains and a poly(tert-butyl methacrylate) block were subjected to hydrolysis to yield the corresponding amphiphilic polymers. The structures and the molecular weight characteristics of the polymers were characterized by spectral and chromatographic analyses. The surface morphology of thus obtained polymers was also investigated by microscopic techniques. © 2019 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 62–69  相似文献   

2.
Statistical copolymers of styrene with trimethylsilyl methacrylate, STMS, and trimethylsilyloxyethyl methacrylate, STME, and of 2-vinylpyridine with trimethylsilyloxyethyl methacrylate, VTME were prepared by free radical copolymerization in benzene with 2,2′-azobisisobutyronitrile, AIBN. The reactivity ratios of the different monomers were estimated using the Finemann-Ross, the inverted Finemann-Ross, and the Kelen-Tüdos or the extended Kelen-Tüdos graphical methods. Structural parameters of the copolymers were obtained by calculating the diad sequence fractions, which were derived using the monomer reactivity ratios. The results were compared with those obtained from the copolymerization of styrene and 2-vinylpyridine with methacrylic acid and 2-hydroxyethyl methacrylate.  相似文献   

3.
Random and block copolymers of styrene and 2-vinylpyridine, covering the full range of composition, have been synthesized. The adsorption of these polymers from trichloroethylene solution on to precipitated silica has been studied and their ability to impart colloidal stability to the silica dispersions also investigated. Estimates of the layer thickness of adsorbed copolymers have been made. Polystyrene is not adsorbed from trichloroethylene and does not stabilize dispersions of precipitated silica. A random copolymer having 1% 2-vinylpyridine units is adsorbed but shows very little steric stabilization. Random copolymers of 2-vinylpyridine content greater than 10% and AB block copolymers of more than 6% 2-vinylpyridine behave very similarly in respect both of the quantity adsorbed and in their ability to stabilize silica suspensions. Layer thickness does not seem to depend on copolymer composition. Random copolymers with low to intermediate 2-vinylpyridine contents are better steric stabilizers in trichloroethylene than are the corresponding copolymers of methyl methacrylate with styrene: this is attributed in part to the longer sequences of adsorbable units in the vinylpyridine copolymers.  相似文献   

4.
The rapid atom transfer radical polymerization (ATRP) of benzyl methacrylate (BnMA) at ambient temperature was used to synthesize block copolymers with styrene as the second monomer. Various block copolymers such as AB diblock, BAB symmetric and asymmetric triblock, and ABABA pentablock copolymers were synthesized in which the polymerization of one of the blocks namely BnMA was performed at ambient temperature. It is demonstrated that the block copolymerization can be performed in a controlled manner, regardless of the sequence of monomer addition via halogen exchange technique. Using this reaction condition, the composition (ratio) of one block (here BnMA) can be varied from 1 to 100. It is further demonstrated that in the multiblock copolymer syntheses involving styrene and benzyl methacrylate, it is better to start from the PS macroinitiator compared with PBnMA macroinitiator. The polymers synthesized are relatively narrow dispersed (<1.5). It is identified that the ATRP of BnMA is limited to certain molecular weights of the PS macroinitiator. Additionally, a preliminary report about the synthesis of the block copolymer of BnMA‐methyl methacrylate (MMA), both at ambient temperature, is demonstrated. Subsequent deprotection of the benzyl group using Pd/C? H2 results in methacrylic acid (MAA)–methyl methacrylate (MAA–MMA) amphiphilic block copolymer. GPC, IR, and NMR are used to characterize the synthesized polymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2848–2861, 2006  相似文献   

5.
Five A-B-A′, A-C-A′, B-A-B′, C-A-C′, and C-B-C′ triblock terpolymers with block orders difficult to synthesize by sequential polymerization have been successfully synthesized by a new methodology combining living anionic polymers with a specially designed linking reaction using α-phenylacrylate as the reaction site. Here, A(A′), B(B′), and C(C′) represent groups of polymers (having chain-end anions with different nucleophilicities), which are only polymerizable from A(A′) to B(B′) to C(C′) via sequential polymerization. The corresponding polymers are polystyrene (A) and poly(α-methylstyrene) (A′), poly(2-vinylpyridine) (B) and poly(4-vinylpyridine) (B′) and polymers from methacrylate type monomers like poly(methyl methacrylate) (C), poly(tert-butyl methacrylate) (C′), poly(2-hydroxyethyl methacrylate) (C′), poly(2,3-dihydroxypropyl methacrylate) (C′), and poly(ferrocenylmethyl methacrylate) (C′). Furthermore, three synthetically difficult B-A-B, C-A-C, and C-B-C triblock copolymers with molecular asymmetry in both side blocks have also been synthesized by the developed methodology. All of the polymers thus synthesized are quite new triblock terpolymers and copolymers with well-defined structures, i.e., precisely controlled molecular weights, compositions and narrow molecular weight distributions (Mw/Mn ≤ 1.05).  相似文献   

6.
Degradable polyester‐based star polymers with a high level of functionality in the arms were synthesized via the “arms first” approach using an acetylene‐functional block copolymer macroinitiator. This was achieved by using 2‐hydroxyethyl 2′‐methyl‐2′‐bromopropionate to initiate the ring‐opening polymerization (ROP) of caprolactone monomer followed by an atom transfer radical polymerization (ATRP) of a protected acetylene monomer, (trimethylsilyl)propargyl methacrylate. The hydroxyl end‐group of the resulting block copolymer macroinitiator was subsequently crosslinked under ROP conditions using a bislactone monomer, 4,4′‐bioxepanyl‐7,7′‐dione, to generate a degradable core crosslinked star (CCS) polymer with protected acetylene groups in the corona. The trimethylsilyl‐protecting groups were removed to generate a CCS polymer with an average of 1850 pendent acetylene groups located in the outer block segment of the arms. The increased functionality of this CCS polymer was demonstrated by attaching azide‐functionalized linear polystyrene via a copper (I)‐catalyzed cycloaddition reaction between the azide and acetylene groups. This resulted in a CCS polymer with “brush‐like” arm structures, the grafted segment of which could be liberated via hydrolysis of the polyester star structure to generate molecular brushes. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1485–1498, 2009  相似文献   

7.
2,2,6,6-Tetramethylpiperidine-N-oxyl (TEMPO)-mediated free radical polymerization of 4-vinylpyridine is found to proceed in a “controlled” manner. A linear increase of molecular weight along with an increase in conversion occurs at varying temperatures. Polymerization of styrene with a poly(4-vinylpyridine) block as macromer results in block copolymers with narrow polydispersity. The polymers are characterized by different size exclusion chromatography methods and converted to cationic polyelectrolytes as well as to polysulfo- and polycarbobetaines.  相似文献   

8.
This article describes the first comprehensive study on the use of vinyl polyperoxides, namely, poly(α‐methyl styrene peroxide) (PMSP) and poly(styrene peroxide) (PSP), as thermal initiators for the synthesis of active polymers, PMSP–PS–PMSP/PSP–PS–PSP, by free‐radical polymerization with styrene. The active polymers have been characterized by 1H NMR, differential scanning calorimetry, thermogravimetric analysis, and gel permeation chromatography analysis. The PMSP–PS–PMSP/PSP–PS–PSP is further used as the thermal macroinitiator for the preparation of another block copolymer, PS‐b‐PMMA, through the reaction of the active polymers with methyl methacrylate. The mechanism of the block copolymer formation is discussed. Having established the scanning micrograph details of the homopolymer phases, we analyze the surface features and morphology of the block copolymer. Furthermore, the distinction in appearance is highlighted with a view toward strengthening the chemistry with the structural appearance in materials processed differently. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3665–3673, 2000  相似文献   

9.
Two different initiator/transfer agents (inifers) containing an alkoxyamine and a dithiobenzoate were synthetized and used to trigger out either reversible addition‐fragmentation chain transfer (RAFT) polymerization or nitroxide‐mediated polymerization (NMP). α‐Dithiobenzoate‐ω‐alkoxyamine‐difunctional polymers were produced in both cases which were subsequently used as precursors in the formation of block copolymers. This synthetic approach was applied to N‐isopropylacrylamide (NIPAM) or polyethylene oxide methacrylate (EOMA) to form α,ω‐heterodifunctional homopolymers via RAFT at 60°C which were chain extended with styrene by activating the alkoxyamine moiety at 120°C. Under such temperature conditions, it is proposed that a tandem NMP/RAFT polymerization is initiated producing a simultaneous growth of polystyrene blocks at both chain‐ends. Self‐assembled nanostructures of these amphiphilic block copolymers were evidenced by scanning electron microscopy. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
用基团转移聚合法(GTP)合成嵌段共聚物是近年来国际上高分子研究的热门之一.在室温下制备嵌段共聚物是GTP的一大特点.本文利用三类不同GTP单体的活性差别[1,2],控制适当的加料顺序及聚合条件,首次用GTP法合成含丙烯腈嵌段的A-B型共聚物并进行表征.  相似文献   

11.
We describe a facile, one‐pot, two‐step polymerization towards synthesizing block co‐polymers bearing reactive isocyanate functional groups. Reversible addition fragmentation chain transfer (RAFT) polymerization is used to mediate the co‐polymerization of isocyanate‐bearing monomers dimethyl meta‐isopropenyl benzyl isocyanate (TMI) and 2‐isocyanatoethyl methacrylate (ICEMA) with styrene and methyl methacrylate (MMA), respectively. ICEMA was incorporated into the polymer at a faster rate than TMI and its unhindered isocyanate group was found to be more reactive than the hindered isocyanate group of TMI. Both the TMI/styrene and the MMA/ICEMA systems maintain the reactivity of the isocyanate functionality, which was exploited by attaching representative hydroxyl‐bearing small and large molecules as well as solid substrates to the block co‐polymers. Thus, we demonstrate the versatility of the block co‐polymer system as a basis for forming branched polymers or as grafts for a solid substrate. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
A novel and simple method of preparation of a block copolymer of styrene and 2-vinylpyridine with narrow molecular weight distribution is reported. The novelty lies in the transformation of the polymerization mechanism from living anionic to controlled/“living” radical polymerization (ATRP). Thus, anionic polymerization of styrene is carried out in benzene using sec-butyllithium as the initiator followed by termination with ethylene oxide to prepare hydroxy-terminated polystyrene (PS-OH). PS-OH is converted to chloride-terminated polystyrene (PS-Cl) by a displacement reaction involving thionyl chloride and pyridine in benzene. PS-Cl is used to initiate the heterogeneous ATRP of 2-vinylpyridine in p-xylene with CuCl/2,2′-bipyridine system. The polymers synthesized are characterized by gel permeation chromatography (GPC), thin layer chromatography (TLC), IR and proton NMR spectroscopies.  相似文献   

13.
Two analogues of diphenylethene carrying phenanthrene (1-(9-phenanthryl)-1-phenylethene (PPE)) and anthracene (1-(2-anthryl)-1-phenylethene (APE)) units were used in radical polymerization of styrene (St) and methyl methacrylate (MMA) at 80 °C using AIBN as initiator. Because of the nature of the polymerization, the resulting polymers possess the corresponding chromophoric groups. Using the methodology of a DPE system, these labelled polymers were further used for the synthesis of block copolymers. In this way poly(methyl methacrylate)-b-poly(styrene) and poly(methyl methacrylate)-b-poly(acrylonitrile) with molar masses of 60,000-90,000 g/mol were synthesized. Incorporation of the chromophoric groups into both homo- and block copolymers was confirmed by spectral measurements.  相似文献   

14.
Abstract

Triblock copolymers with polystyrene outer blocks and an inner polymethacrylate block were synthesized by a site transformation reaction using anionic and cationic polymerization techniques. In order to obtain such ABA block copolymers, two synthetic routes have been applied. In the first case, different methacrylates (methyl methacrylate, 2-ethylhexyl methacrylate) were polymerized anionically with a bifunctional initiator to get poly(methacrylate) dianions later forming the inner block whereas in the second case poly(styrene)-block-poly(methacrylate) anions were synthesized by monofunctional initiation via sequential monomer addition. In a subsequent step, the living chain ends of the methacrylate dianions on one side, and the diblock copolymer anions on the other side, were functionalized with 1,4-bis(l-bromoethyl)benzene in order to obtain a potential bifunctional or monofunctional macroinitiator for the cationic polymerization of styrene. Then, styrene was polymerized cationically with the macroinitiator in the presence of SnCl4 as coinitiator and n Bu4NBr as a common ion salt in CH2Cl2 at -15°C. Block formation was proven by SEC measurements, preparative SEC and NMR characterization.  相似文献   

15.
Fluorinated polymer particles with grafting sulfonate chains, which showed high dispersion stability in aqueous media, were synthesized by the crosslinking of block copolymer micelles. A crosslinkable block copolymer, poly[(2,3,4,5,6‐pentafluorostyrene)‐co‐4‐(1‐methylsilacyclobutyl)styrene]‐b‐poly(neopentyl 4‐styrenesulfonate), composed of a statistical copolymer segment of 2,3,4,5,6‐pentafluorostyrene with 4‐(1‐methylsilacyclobutyl)styrene and a neopentyl 4‐styrenesulfonate segment, was prepared by the nitroxy‐mediated living radical polymerization of a 2,3,4,5,6‐pentafluorostyrene/4‐(1‐methylsilacyclobutyl)styrene mixture and neopentyl 4‐styrenesulfonate. The block copolymer formed micelles with a poly[(2,3,4,5,6‐pentafluorostyrene)‐co‐4‐(1‐methylsilacyclobutyl)styrene] core in acetonitrile, which were crosslinked via the ring‐opening reaction of silacyclobutyl groups in the core by a treatment with a platinum catalyst. The deprotection of sulfonate groups in the micelle corona by exposure to trimethylsilyl iodide and a treatment with aqueous HCl, followed by neutralization with aqueous NaOH, provided a polymer particle with polymer chains of sodium 4‐styrenesulfonate grafted on its surface. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1316–1323, 2007  相似文献   

16.
The effect of mixing conditions on the morphology, molten‐state viscoelastic properties, and tensile impact strength of polystyrene/polyethylene (80/20) blends compatibilized with styrene–butadiene block copolymers containing various numbers and lengths of blocks was studied. Under all mixing conditions, an admixture of a styrene–butadiene block copolymer led to a finer phase structure and to an increase in the dynamic viscosity, storage modulus, and tensile impact strength. The effects were stronger for S–B diblock with a short styrene block than for S–B–S–B–S pentablock with long styrene blocks (where S represents styrene and B represents butadiene). For all blends mixed longer than 2 min, the mixing time had only a small effect on their morphology and properties. Surprisingly, the localization of S–B diblock copolymers was strongly dependent on the rate of mixing. The mixing rate had a nonnegligible effect on the viscoelastic properties of the compatibilized blends. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 609–622, 2003  相似文献   

17.
Crosslinked bead polymers containing vinylpyridine units were prepared by pearl copolymerization of monomer mixtures containing various percentagesof 4-vinylpyridine, styrene, and di-vinylbenzene. The polymers were functionalized by reaction with hydrogen bromide and bromine, and the resulting poly-(vinylpyridinium hydrobromide perbromide) resins, which were stable for long periods of time, were used to brominate a number of alkenes and ketones. In most cases, the brominated products were obtained in excellent yields and could be separated from the polymeric by-product by a simple filtration. The polymeric reagent could be fully regenerated after use without loss of activity.  相似文献   

18.
A combination of gel permeation chromatography (GPC), thin-layer chromatography (TLC) and pyrolysis gas chromatography (PGC) has been used for investigations of a polymethyl methacrylate-polystyrene-polymethyl methacrylate block copolymer. Continuous distribution of the polymer (40-mg sample) was attained according to the content of the styrene and methyl methacrylate units and of the block copolymer and according to the composition of the copolymer as functions of the hydrodynamic radius of the macromolecules. The polymer was subjected to a preliminary fractionation with an analytical gel chromatograph. The fractions were investigated by TLC, which permitted the separation of the block copolymer and the homopolymers. The composition of the fractions obtained by GPC and TLC was determined by PGC. As a result, it was possible to establish the composition of the block copolymer and its ratio to polymethyl methacrylate in each fraction. This investigation was based on a combination of highly effective fractionation by chromatographic methods with precise quantitative ratios obtained from Benoit's universal calibration graph and from determinations of the composition of the polymer fractions by PGC. The mechanism of the TLC of polymers, including the appearance of artefacts that distort the results of analysis, is also discussed.  相似文献   

19.
The correlation between the segment interaction parameter and the interface width of incompatible polymer blends can be used to obtain information on the segment interaction of incompatible polymers via an accurate measurement of the narrow interface width by neutron reflectometry. Several model systems are discussed including polystyrene/poly(cyclohexyl acrylate-stat-n-butyl methacrylate), polystyrene/ poly (styrene- stat-p-bromo styrene) and poly styrene/poly(methyl methacrylate).  相似文献   

20.
Binary blends of poly(2,6–dimethyl–1,4–phenylene oxide) (PPE) with various styrene copolymers were investigated. Poly(styrene–co–acrylonitrile) (SAN), poly[styrene–co–(methyl methacrylate)] (SMMA), poly[styrene–co–(acrylic acid)] (SAA) and poly[styrene–co–(maleic anhydride)] (SMA) are only miscible with PPE when the amount of comonomer is rather small. From calculated binary interaction densities it can be concluded that the strong repulsion between PPE and comonomer limits miscibility. In blends of PPE with SAN, as well as with ABS, the inter-facial tension between the blend components is significantly reduced upon addition of polystyrene–block–poly–(methyl methacrylate) diblock copolymers (PS–b–PMMA) and polystyrene–block–poly (ethylene–co–butylene)–block–poly–(methyl methacrylate) triblock copolymers (PS–b–PEB–b–PMMA). They show a profound influence on morphology, phase adhesion and mechanical blend properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号