首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Polymer/expanded graphite (EG) nanocomposites have great importance in many industrial applications mainly due to their high electrical/thermal conductivity or flame retardancy. However, to fully employ the benefits of polymer/EG nanocomposites one must consider the high degree of porosity of EG. The high degree of porosity of EG can deteriorate the composites’ mechanical properties if the polymer chains cannot diffuse completely into the EG pores. In this article, an insight is given into the diffusion of unsaturated isophthalic polyester (UP) resin, consisting of a combination of maleic anhydride and isophthalic anhydride in the resin backbone, with two viscosities, into the pores of the EG particles of various degrees of porosity. The diffusion experiments were carried out on compressed EG tablets with the same density but different porosity due to the different porosity of the EG particles. The results showed that the diffusion rate of the UP resin with higher viscosity slightly decreased when the EG porosity decreased but, in the opposite way, it strongly increased for the low viscosity UP resin. The EG nanocomposites samples were molded at varying pressures. The micrographs of the fractured surfaces of the EG nanocomposites showed that the EG pores were not filled with resin, thus the EG nanocomposites had residual pores. It was found that composites containing EGs with higher expansion ratio and larger particles and pores showed larger residual pores. Furthermore, the composites prepared with the more viscous UP resin showed more residual pores. By applying a pressure of 10?bar instead of 1?bar, a reduction of 7–20% in the residual pores of the nanocomposites was observed which led to improved mechanical properties by up to 20% in flexural strength for the EG with the highest expansion ratio.  相似文献   

2.
H. Mohit 《Composite Interfaces》2018,25(5-7):629-667
Abstract

Plant cellulose fiber polymer composites are readily applied in wide range of applications due to ecological and economical alternative to traditional materials. The considerable amount of residues and organic wastes from agricultural process are still employed as lower energy resource. Organic materials are generally disposed in composting, landfilling or anaerobic digestion. The utilization of these wastes in plant fiber composites shows significant alternative and environmental friendly in nature. The production of plant cellulose fiber composite with higher structural properties is optimized by interfacial bonding between polymer and reinforced fiber. The interface plays a vital role in regulating mechanical properties by distributing bonds and stress transferring, which is one of least understood element of composites. This paper presents the comprehensive review of fiber structures, different modification techniques to reduce the incompatibility between matrix and fiber, assessment of structure interface and bonding, clarifies the interfacial adhesion of cellulose fiber composites.  相似文献   

3.
Curing behavior of amino-functionalized carbon nanotubes (ACNT) used as reinforcing agent in epoxy resin has been examined by thermal analysis. Experiments performed as per supplier’s curing conditions showed that modification of the curing schedule influences the thermo-mechanical properties of the nanocomposites. Specifically, the glass transition temperature (Tg) of ACNT-reinforced composites increased likely due to the immobility of polymer molecules, held strongly by amino carbon nanotubes. Further, a set of composites were prepared by implementing the experimentally determined optimal curing schedule to examine its effect on the mechanical properties of different GFRP compositions, while focusing primarily on reinforced ACNT and pristine nanotube (PCNT) matrix with silane-treated glass fibers. From the silane treatment of glass fibers in ACNT matrix composition it has been observed that amino silane is much better amongst all the mechanical (tensile and flexural) properties studied. This is because of strong interface between amino silane-treated glass fibers and modified epoxy resin containing uniformly dispersed amino-CNTs. On the other hand, PCNT GFRP composites with epoxy silanes demonstrated enhanced results for the mechanical properties under investigation which may be attributed to the presence of strong covalent bonding between epoxy silane of glass fiber and epoxy–amine matrix.  相似文献   

4.
CoTb0.03Fe1.97O4 ferrite and poypyrrole (PPy) polymer nano composites were prepared by mixing the nano crystalline ferrite with poypyrrole (PPy) by following the solid state reaction synthesis route. The XRD patterns of CoTb0.03Fe1.97O4 spinel ferrite powders and polymer (PPy) exhibited single phase spinel structure. The amorphous nature of PPy was evidenced by the broad peaks of XRD patterns. The surface morphology unfolded heterogeneous distribution in composites and ferrite. The grains in ferrite were spherical in shape with clear boundaries. The morphology was appreciably altered by the inclusion of ferrite contents. The higher activation energy and resistivity aroused due to blocking of conduction mechanism owing to nanoparticles embedded in the PPy matrix. A downfall in the dielectric loss of the composites is observed as the frequency of the applied field is increased. The incorporation of ferrite contents optimized the magnetic parameters of the composites. The enhanced coercivity (Hc) of these nanocomposites might be beneficial for memory devices.  相似文献   

5.
近红外光谱(NIR)检测技术能够提供样品丰富的结构和组成信息,且具有分析速度快、样品无需处理等突出特点,在聚合物领域有了越来越广泛的应用。综述了该技术在聚合物合成到成型加工再到回收利用整个生命周期过程中各个环节的应用研究进展。在聚合物的合成和加工过程中,近红外光谱检测技术可用于材料参量的定量测量,且由于光纤良好的化学和热稳定性,使其能够在强腐蚀、高温、高压等危险环境下进行在线实时监测。对于聚合物合成,选择聚合反应转化率、聚合产物粒径和聚合物组成三个关键参量,概述了近红外光谱在线测量上述参量的相关研究进展;对于聚合物加工,主要讨论了反应性挤出加工过程中近红外光谱在线测量聚合物分子量、残余单体含量、接枝率等反映材料加工状态参量的应用研究。在聚合物的回收利用过程中,近红外光谱可用于废旧塑料制品的定性分类识别,围绕该应用分析了其国内外的研究现状。指出了近红外光谱检测技术在应用中存在的问题,并提出几点建议,最后对该技术在聚合物领域的发展方向进行了展望,并认为随着研究工作的深入和在线测量仪器的发展,近红外光谱检测技术将在聚合物领域有着更加广阔的应用前景。  相似文献   

6.
Multiwalled carbon nanotubes (MWCNTs) are considered to be the ideal reinforcing agent for high-strength polymer composites, because of their fantastic mechanical strength, high electrical and thermal conductivity and high aspect ratio. Polymer/MWCNTs composites are easily molded, and the resulting shaped plastic articles have a perfect surface appearance compared with polymer composites made using usual carbon or glass fibers. Good interfacial adhesion between the MWCNTs and the polymer matrix is essential for efficient load transfer in the composite. The ultrahigh strength polymer composites demand the uniform dispersion of the MWCNTs in the polymer matrix without their aggregation and the good miscibility between MWCNT and polymer matrix. This approach can also be applied to biodegradable synthetic aliphatic polyesters such as poly(l-lactide) (PLLA), which has received a great deal of attention due to environmental concerns. In this study, PLLA was melt-compounded with MWCNTs. A high degree of dispersion of the MWCNTs in the composites was obtained by grafting PLLA onto the MWCNTs (PLLA-g-MWCNTs). After oxidizing the MWCNTs by treating them with strong acids, they were reacted with l-lactide to produce the PLLA-g-MWCNTs. The mechanical properties of the PLLA/PLLA-g-MWCNT composite were higher than those of the PLLA/MWCNT composite. The electrical conductivity of the composites was determined by measuring the volume resistivity, which is a value of the resistance expressed in a unit volume by two-probe method. The thermal diffusivity and heat capacity of composites was measured by laser flash method, and the effects of modification of the MWCNT in PLLA matrix are discussed.  相似文献   

7.
Conducting polymer composites based on Fe3O4 nanocrystals in a polyvinyl alcohol matrix are synthesized. The current-voltage characteristics, the magnetization, and the magnetoresistance of the nanocomposites are investigated, and a giant negative magnetoresistance is observed. The decrease in the resistance at room temperature is found to reach 10% in a 10 kOe field. Pis’ma Zh. éksp. Teor. Fiz. 67, No. 1, 37–40 (10 January 1998)  相似文献   

8.
Some materials and their micro‐/nanostructures are explored to shield near‐infrared (NIR) light. However, the structural role of polymeric matrices in terms of the sensitivity to NIR light and the scattering/absorption characteristics of particles bearing inorganic colloids lack understanding. To understand this issue further, a polymer–inorganic hybrid microparticle is synthesized, where submicrometer‐sized TiO2 core‐thin aluminium hydroxide shell colloids (TiO2@Al(OH)3) are dispersed in a roughened polymer hollow particle matrix. They exhibit higher light extinction at NIR frequencies and higher light scattering efficiencies in the NIR regions compared to hybrid solid microparticles and a simple mixture of inorganic and polymer hollow microparticles. Owing to these characteristics, a cosmetic formulation containing the roughened hybrid hollow microparticles effectively suppresses the increase in the temperatures of artificial skin upon the illumination of a simulated sunlight, without displaying skin whitening which is caused by including much inorganic colloids in the formulation. The present results are helpful to those who manipulate the optical characteristics of inorganic particles whose geometries are hardly tailored. The results are also practically helpful to those who want to block NIR light by reducing the amount of inorganic particles.  相似文献   

9.
《Composite Interfaces》2013,20(4):335-353
Cellulosic fibers have been used as cost-cutting fillers in plastic industry. Among the various factors, the final performance of the composite materials depends to a large extent on the adhesion between the polymer matrix and the reinforcement and therefore on the quality of the interface. To achieve optimum performance of the end product, sufficient interaction between the matrix resin and the cellulosic material is desired. This is often achieved by surface modification of the resin or the filler. Banana fiber, the cellulosic fibers obtained from the pseudo-stem of banana plant (Musa sepientum) is a bast fiber with relatively good mechanical properties. The fiber surface was modified chemically to bring about improved interfacial interaction between the fiber and the polyester matrix. Various silanes and alkali were used to modify the fiber surface. Modified surfaces were characterized by SEM and FTIR. The polarity parameters of the chemically modified fibers were investigated using the solvatochromic technique. The results were further confirmed by electrokinetic measurements. Chemical modification was found to have a profound effect on the fiber–matrix interactions. The improved fiber–matrix interaction is evident from the enhanced tensile and flexural properties. The lower impact properties of the treated composites compared to the untreated composites further point to the improved fiber–matrix adhesion. In order to know more about the fiber–matrix adhesion, fractured surfaces of the failed composites where further investigated by SEM. Of the various chemical treatments, simple alkali treatment with NaOH of 1% concentration was found to be the most effective. The fiber–matrix interactions were found to be dependent on the polarity of the modified fiber surface.  相似文献   

10.
Abstract

Organic molybdenum (e.g., molybdenum dialkyldithiocarbamate, Mo-DTC) is a typical additive for liquid lubricants which can produce a significant anti-wear role with only a minor addition. In this article Mo-DTC additives were used to enhance the wear resistance of a phenolic resin. Phenolic/Mo-DTC composites with various Mo-DTC filler ratios were prepared by hot-press molding. The hardness and wear performance of the composites were measured by a Shore durometer and by an M-2000 friction and wear tester, respectively. The results showed that after adding the Mo-DTC filler, both the hardness and the anti-wear properties of the composites materials were improved. Under the condition of high-speed with a smooth ring, the wear scar length for the sample with 1% Mo-DTC content decreased by 45.6% compared with that of the neat phenolic resin whereas for a wire rope ring a decrease of 16% was observed for 0.5% Mo-DTC. Based on the wear morphology of the composites, the wear mechanisms of the designed phenolic/Mo-DTC composites were determined.  相似文献   

11.
Abstract: This review article introduces recent technical and scientific reports on near-infrared (NIR) spectroscopy in the wood and paper industry, which have increased during the last decade. Many researchers have reported that the NIR technique is useful for detection of both chemical and physical properties of wood materials and has been widely used in cases where the characteristic cellular structure of the material is retained. With regard to application of NIR spectroscopy to pulp and paper, many publications have reported its potential as an on-line measurement technique during paper-making process control. NIR spectroscopy is considered fundamental in applied research on wood and paper. Utilization of NIR spectroscopy in the wood and paper industry should take into account its applicability and limitations as a nondestructive technique.  相似文献   

12.
Rice husk is rich in amorphous silica which has found various applications as a filler in rubbers and plastics. In the research described here silica was extracted from rice husk ash in the form of sodium silicate which was used to produced amorphous precipitated silica (PS) and silica aerogel (SA) using a sol – gel process and supercritical drying. These materials were then physically mixed with unsaturated polyester (UP) resin and cured at room temperature to form polymer composites. The experimental results showed that the UP composites with 30% (volume percent) of SA filler had lower density and better thermal insulation than the composites with the same amount of PS. Thermogravimetric analysis (TGA) results showed that the Tonset of the PS and SA composites were slightly delayed by 15 and 10°C, respectively. The tensile stress-strain curves showed that addition of the fillers reduced the tensile strength, but increased the elastic moduli of the UP matrix. PS filled UP composites exhibit higher moduli (higher stiffness) than that of SA filled UP composites. This was due to agglomeration and poor adhesion of the SA particles to the UP matrix while better dispersion was observed for the PS filled composite.  相似文献   

13.
The polyvinyl alcohol (PVA)/barium zirconium titanate Ba[Zr0.1Ti0.9]O3 (BZT) polymer–ceramic composites with different volume percentage are obtained from solution mixing and hot-pressing method. Their structural and electrical properties are characterized by X-ray diffraction (XRD), Rietveld refinement, cluster modeling, scanning electron microscope and dielectric study. XRD patterns of PVA/BZT polymer–ceramics composite (with 50% volume fractions) indicate no obvious differences than the XRD patterns of pure BZT which shows that the crystal structure is still stable in the composite. The scanning electron micrograph indicates that the BZT ceramic is dispersed homogeneously in the polymer matrix without agglomeration. The dielectric permittivity (εr) and the dielectric loss (tan δ) of the composites increase with the increase of the volume fraction of BZT ceramic. Theoretical models are employed to rationalize the dielectric behavior of the polymer composites. The dielectric properties of the composites display good stability within a wide range of temperature and frequency. The excellent dielectric properties of these polymer–ceramic composites indicate that the BZT/PVA composites can be a candidate for embedded capacitors.  相似文献   

14.
ABSTRACT

Polymers based on ionic conducting materials have important interest because of their potential applications in polymer electrolytes and membranes for fuel cell application. PVdF-co-HFP poly(viniliden-co-hexafluoropropylene) was chosen as a polymer matrix because of its high ionic conductivity and better mechanical properties. Polymer matrix composites were prepared with various amounts of LiClO4 salt by a solution casting method. The sample-ionic conductivity measurements were recorded by AC impedance analyzer at different frequencies from 0.1?Hz to 20?MHz and at different temperatures from 273 to 373?K.

The changes of nanoscopic free volume and free volume fraction in these materials were investigated in terms of temperature from 273 to 373?K using Positron Annihilation Lifetime Spectroscopy (PALS) and Simha-Somcynsky (SS) Hole Theory. The free volume had a bump at about 3% in weight percentage of the salt and there is a slight increase after 10%. The effects of weight percentages of LiClO4 and temperature were investigated. The mechanism of the ac ionic conductivity was presented in terms of the free volume models, however thermo-occupancy function justifies the best accurate representation of the data.  相似文献   

15.

The kinematics of shape recovery for the mixtures of thermodynamically incompatible polymers and polymer composites filled with thermoexpanded graphite has been investigated. It is shown that in these systems the shape recovery is accompanied by an increase in volume. The latter is attained at the expense of formation of microdiscontinuities at the interfaces (the polymer mixtures) or of recovery of filler porosity.  相似文献   

16.
Abstract

Hybrid composites based on polysulfone of bisphenol A (PSF) and glass fiber (GF) reinforced copolyester liquid‐crystalline polymer (gLCP) were obtained by injection molding. The viscosity of the 10% and 20% gLCP composites was lower than that of pure PSF. The Young's modulus followed the direct rule of mixtures. This was due to the counteracting effects of the decreasing orientation of the liquid‐crystalline polymer (LCP) in the skin at increasing gLCP contents on the one hand; and either the increasing skin thickness in the PSF‐rich composites or the lower orientation of the core in the PSF‐poor composites on the other. The composites with 10–20% gLCP showed the best mechanical performance, because, besides their enhanced processability, they showed a tensile strength similar to that of PSF and much larger notched impact strength.  相似文献   

17.
《Composite Interfaces》2013,20(2-3):281-299
Nowadays, utilisation of biodegradable materials has become necessary in order to maintain global environmental and ecological balance. Fully biodegradable nano 'Green' textile composites have been prepared from cellulose nanofibers reinforced corn starch resin and ramie fabric. Nanofibers having dimensions of approximately 1 μm long and 20–30 nm in diameter are used in the study. The nanofibers were incorporated in corn starch resin via ball mill mixing using ceramic balls. Textile composites were fabricated by pasting the reinforced resin onto the ramie fabric and by hot compression molding technique. Interactions at the fiber–matrix interface and the compatibility between cellulose and corn starch resin molecules will affect the properties of the system. The well dispersed cellulose nanofibers contribute higher interfacial area and good fiber networking within the matrix resin. This will lead to better barrier properties. Sorption characteristics of water, oil and diesel in the textile composites were analysed and the influence of nano fibers and macro fibers on the transport phenomena was investigated. The kinetics of sorption-diffusion process was investigated. Kinetic parameters such as n, k, diffusion coefficient, permeability, solubility parameter, % swelling index, etc., were analysed. The presence of cellulose nanofibers influences the sorption mechanism. The water sorption mechanism in the nanocomposites was found to exhibit slight deviation from Fickian mode. Structure–property relationships of the nanocomposites were evaluated.  相似文献   

18.
Abstract

Synchrotron infrared (IR) microscopy is used to study multiphase polymer systems. Data is obtained at high spatial resolution from polymer blends, composites, and polymorphic isotactic polypropylene, and spectra are recorded successfully with apertures as small as 3 µm × 3 µm due to the high brightness of the synchrotron IR source.  相似文献   

19.
The methods of synthesizing fullerene-containing polymer composites are analyzed. It is established that the technique of determining the intrinsic viscosity can be used for evaluating the effect of the fullerene involved in the polymer composite on the polymer chains. The influence of the synthesis procedure on the fullerene content in a water-soluble fraction is demonstrated using the poly(N-vinylpyrrolidone)-C60 (PVP-C60) system as an example.  相似文献   

20.
A new method is proposed for synthesizing metallic nanoparticles in a polymer matrix. These nanoparticles are synthesized during thermal vacuum evaporation of a metal (4.8 × 10−6 g/cm2) onto the surface of viscousfluid epoxy resin (at a viscosity of 20–120 Pa s) having room temperature, which is well below the glass transition temperature of the polymer. As a result, epoxy resin layers containing silver nanoparticles in their volume form; these nanoparticles are studied by transmission electron microscopy and optical absorption spectroscopy. Various types of disperse structures formed by metallic nanoparticles in the polymer are detected. The morphology of the composite material is found to be controlled by the polymer viscosity and the metal deposition time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号