首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
4-Methylhexyne-1, 5-methylhexyne-1, hexyne-1, and 6-methylheptyne-2 have been decomposed in comparative-rate single-pulse shock-tube experiments. Rate expressions for the initial decomposition reactions at 1100°K and from 2 to 6 atm pressure are In combination with previous results, rate expressions for propargyl C? C bond cleavage are related to that for the alkanes by the expression These results yield a propargyl resonance energy of D(nC3H7-H) – D(C3H3-H) = 36 ± 2 kJ, in excellent agreement with a previous shock-tube study. They also lead to D(CH3C≡CCH2-H) – D(C3H3-H) = 0.6 ± 3 kJ, D(sC4H9-H) – D(iC3H7-H) = 0 ± 3 kJ, D(iC4H9-H) – D(nC3H7-H) = 2 ± 3 kJ, and D(nC3H7-H) – D(iC3H7-H) = 13.9 ± 3 kJ (all values are for 300°K). The systematics of the molecular decomposition process are explored.  相似文献   

2.
The abstraction of hydrogen and deuterium from 1,2-dichloroethane, 1,1,2-trichloroethane, and two of their deuterated analogs by photochemically generated ground state chlorine atoms has been investigatedin the temperature range 0–95°C using methane as a competitor. Rate constants and their temperature coefficients are reported for the following reactions Over the temperature range of this investigation an Arrhenius law temperature dependence was observed in all cases. Based on the adopted rate coefficient for the chlorination of methane [L.F. Keyser, J. Chem. Phys., 69 , 214 (1978)] which is commensurate with the present temperature range, the following rate constant values (cm3 s?1) are obtained: The observed pure primary, and mixed primary plus α- and β3-secondary kinetic isotope effects at 298 K are k3/k6 = 2.73 ± 0.08, and k1/k2 = 4.26 ± 0.12, respectively. Both show a normal temperature dependence decreasing to k3/k6 = 2.39 ± 0.06 and k1/k2 = 3.56 ± 0.09 at 370 K. Contrary to some simple theoretical expectations, the kinetic isotope effect for H/D abstraction decreases with increasing number of chlorine substituents in the geminal group in a parallel manner to the trend established previously for C1-substitution in the adjacent group. The occurrence of a β-secondary isotope effect, k4/k5, is established; this effect suggests a slight inverse temperature dependence.  相似文献   

3.
The catalytic activity of iodine monobromide and iodine monochloride were investigated in the reaction, Et3SiOBun + BusOH ? Et3SiOBus + BunOH. Pseudo first-order rate constants were measured by gas chromatography, at 10°, 20°, 30°, and 40°C for iodine monobromide and at 10°, 20°, and 30°C for iodine monochloride, on reaction mixtures containing both butanols in excess. The catalytic coefficients of both catalysts were evaluated from the observed rate constants as follows: The activation paramaters were estimated from these data, and were compared with the values for iodine catalysis. These results are consistent with the mechanism previously proposed.  相似文献   

4.
The pyrolysis of isobutane was investigated in the ranges of 770° to 855°K and 20 to 150 Torr at up to 4% decomposition. The reaction is homogeneous and strongly self-inhibited. A simple Rice-Herzfeld chain terminated by the recombination of methyl radicals is proposed for the initial, uninhibited reaction. Self-inhibition is due to abstraction of hydrogen atoms from product isobutene giving resonance-stabilized 2-methylallyl radicals which participate in termination reactions. The reaction chains are shown to be long. It is suggested that a previously published rate constant for the initiation reaction (1) is incorrect and the value k1 = 1016.8 exp (?81700 cal mol?1/RT)s?1 is recommended. The values of the rate constants for the reactions (4i) (4t) (8) are estimated to be and From a recalculation of previously published data on the pyrolysis of isobutane at lower temperatures and higher pressures, the value k11c, = 109.6 cm3 mol?1 s?1 is obtained for the rate constant of recombination of t-butyl. A calculation which is independent of any assumed rate constants or thermochemistry shows that the predominant chain termination reaction is the recombination of two methyl radicals in the conditions of the present work and the recombination of two t-butyl radicals in those of our previous study at lower temperatures and higher pressures.  相似文献   

5.
The high temperature kinetics of NH in the pyrolysis of isocyanic acid (HNCO) have been studied in reflected shock wave experiments. Time histories of the NH(X3Σ?) radical were measured using a cw, narrow-linewidth laser absorption diagnostic at 336 nm. The second-order rate coefficients of the reactions: (1) were determined to be: cm3?mol?1?s?1, where f and F define the lower and upper uncertainty limits, respectively. The data for k1a are somewhat better fit by:   相似文献   

6.
According to our experiments the bromide ion concentration exhibits in the bromate–ascorbic acid–malonic acid–perchloric acid system three extrema as a function of time. To describe this peculiar phenomenon, the kinetics of four component reactions have been studied separately. The following rate equations were obtained: Bromate–ascorbic acid reaction: Bromate–bromide ion reaction: Bromide–ascorbic acid reaction: Bromine–malonic acid reaction: k4 = 6 × 10?3 s?1, k-4 ≥ 1.7 × 103 s?1, k5 ≥ 1 × 107M?1 · s?1 Taking into account the stoichiometry of the component reactions and using these rate equations, the concentration versus time curves of the composite system were calculated. Although the agreement is not as good as in the case of the component reactions, it is remarkable that this kinetic structure exhibits the three extrema found.  相似文献   

7.
3,3-Dimethylbutanol-2 (3,3-DMB-ol-2) and 2,3-dimethylbutanol-2 (2,3-DMB-ol-2) have been decomposed in comparative-rate single-pulse shock-tube experiments. The mechanisms of the decompositions are The rate expressions are They lead to D(iC3H7? H) – D((CH3)2(OH) C? H) = 8.3 kJ and D(C2H5? H) – D(CH3(OH) CH? H) = 24.2 kJ. These data, in conjunction with reasonable assumptions, give and The rate expressions for the decomposition of 2,3-DMB-1 and 3,3-DMB-1 are and   相似文献   

8.
Metastable N2(A3Σu+), υ = 0, υ = 1, molecules are produced by a pulsed Tesla-type discharge of a dilute N2/Ar gas mixture. Rate coefficients for quenching these metastable levels by O2, O, N, and H were obtained by time-resolved emission measurements of the (0, 6) and (1, 5) Vegard–Kaplan bands. In units of cm3/mole · sec at 300°K and with an experimental uncertainty of ±20%, these rate coefficients for N2(A3Σu+) are Within the limits of error these coefficients apply to quenching N2(A3Σu+) υ′ = 1 as well.  相似文献   

9.
Cyclopropyl cyanide isomerizes in the gas phase at 660°–760°K and 2–89 torr to give mainly cis- and trans-crotonitrile and allyl cyanide, with traces of methacrylonitrile. The reactions are first order, homogeneous, and unaffected by the presence of radical-chain inhibitors. The rate constants are given by Overall: cis-Crotonitrile: trans-Crotonitrile: Allyl cyanide: where the error limits are standard deviations. On the basis of a biradical mechanism, it is deduced that the ? CH? CN radical center is resonance stabilized by ca. 30 kJ mole?1. Approximate equilibrium data are given for interconversion of the 1- and 3-cyanopropenes.  相似文献   

10.
The rates of several novel elementary reactions involving ClO, BrO and SO free radicals in their ground states were studied in a discharge-flow system at 295 K, using mass spectrometry. The rate constant k2 was determined from the decay of SO radicals in the presence of excess ClO radicals: The SO + OClO overall reaction has a complex mechanism, with the primary step having a rate constant k5 equal to (1.9 ± 0.7) × 10?12 cm3 sec?1: A lower limit for the rate constant of the rapid reaction of SO radicals with BrO radicals was determined:   相似文献   

11.
The gas-phase photochlorination (λ = 436 nm) of the 1,1,1,2-C2H2Cl4 has been studied in the absence and the presence of oxygen at temperatures between 360 and 420°K. Activation energies have been estimated for the following reaction steps: The dissociation energy D(CCl3CHCl? O2) ± (24.8 ± 1.5) kcal/mole has also been estimated from the difference in activation energy of the direct and reverse reactions The mechanism is discussed and the rate parameters are compared to those obtained for a series of other chlorinated ethanes.  相似文献   

12.
The kinetics of the gas-phase reaction of 2,2,2-trifluoroethyl iodide with hydrogen iodide has been studied over the temperature range of 525°K to 602°K and a tenfold variation in the ratio of CF3CH2I/HI. The experimental results are in good agreement with the expected free radical-mechanism: An analysis of the kinetic data yield: where θ =2.303RT in kcal/mol. If these results are combined with the assumption that E2 = 0 ± 1 kcal/mol, then one obtains DH (CF3CH2? I) = 56.3 kcal/mol. This result may be compared with DH(CH3CH2? I) = 52.9 kcal/mol and suggests that substitution of three fluorines for hydrogen in the beta position strengthens the C? I bond slightly.  相似文献   

13.
The thermal isomerization of cis-hexatriene (cHT) to cyclohexadiene (CHD) and the dimerization of CHD and trans-hexatriene (tHT) in the liquid phase in the temperature range 380 K-473 K are reported. The rate coefficients are: for the cHT to CHD isomerization for tHT dimerizationlog and for CHD dimerization; endo form exo form © 1993 John Wiley & Sons, Inc.  相似文献   

14.
The kinetics of the gamma-radiation-induced free radical chain reaction in solutions of C2Cl3F in cyclohexane (RH) was investigated over a temperature range of 87.5–200°C. The following rate constants and rate constant ratios were determined for the reactions: In competitive experiments in ternary solutions of C2Cl4 and C2Cl3F in cyclohexane the rate constant ratio k2c/k2a was determined By comparing with previous data for the addition of cyclohexyl radicals to other chloroethylenes it is shown that in certain cases the trends in activation energies for cyclohexyl radical addition can be correlated with the C? Cl bond dissociation energies in the adduct radicals.  相似文献   

15.
Cyclopentane has been decomposed in comparative-rate single-pulse shock-tube experiments. The pyrolytic mechanism involves isomerization to 1-pentene and also a minor pathway leading to cyclopropane and ethylene. This is followed by the decomposition of 1-pentene and cyclopropane. The rate expressions over the temperature range of 1000°–1200° K are Details of the cyclopentane decomposition processes are considered, and it appears that if the trimethylene radical is an intermediate, then ΔHf(trimethylene) ≤ 280 kJ/mol at 300°K.  相似文献   

16.
Absolute rate constants were determined for the gas phase reactions of OH radicals with a series of linear aliphatic ethers using the flash photolysis resonance fluorescence technique. Experiments were performed over the temperature range 240–440 K at total pressures (using Ar diluent gas) between 25–50 Torr. The kinetic data for dimethylether (k1), diethylether (k2), and dipropylether (k3) were used to derive the Arrhenius expressions and At 296 K, the measured rate constants (in units of 10?13 cm3 molecule?1 s?1) were: k1 = (24.9 ± 2.2), k2 = (136 ± 9), and k3 = (180 ± 22). Room temperature rate constants for the OH reactions with several other aliphatic ethers were also measured. These were (in the above units): di-n-butylether, (278 ± 36); di-n-pentylether, (347 ± 20); ethyleneoxide, (0.95 ± 0.05); propyleneoxide, (4.95 ± 0.52); and tetrahydrofuran, (178 ± 16). The results are discussed in terms of the mechanisms for these reactions and are compared to previous literature data.  相似文献   

17.
2,4-Dimethylhexene-l has been decomposed in single-pulse shock tube experiments. Rate expressions for the initial reactions are and sec?1 at 1.5–5 atm and 1050°K. This leads to ΔH°f300 (CH2 = C(CH3)CH2) = 124 kJ/mol, or an allylic resonance energy of 50 kJ/mol. Rate expressions for the decomposition of the appropriate olefins which yield isobutenyl radicals and methyl, ethyl, isopropyl, n-propyl, t-butyl, and t-amyl radicals, respectively, are presented. The rate expression for the decomposition of isobutenyl radical is (at the beginning of the fall-off region). For the combination of isobutenyl and methyl radicals, the rate constant at 1020°K is Combination of this number and the calculated rate expression for 2-methylbutene-1 decomposition gives S. (1100) = 470 J/mol °K. This yields It is demonstrated that an upper limit for the rate of hydrogen abstraction by isobutenyl from toluene is   相似文献   

18.
H2S increases the thermal isomerization of butene-2 cis (Bc) to butene-1 (B1) and butene-2 trans (Bt) around 500°C. This effect is interpreted on the basis of a free radical mechanism in which buten-2-yl and thiyl free radicals are the main chain carriers. B1 formation is essentially explainedby the metathetical steps: whereas the free radical part of Bt formation results from the addition–elimination processes: . It is shown that the initiation step of pure Bc thermal reaction is essentially unimolecular: and that a new initiation step occurs in the presence of H2S: . The rate constant ratio has been evaluated: and the best values of k1 and k1', consistent with this work and with thermochemical data, are . From thermochemical data of the literature and an “intrinsic value” of E?3 ? 2 kcal/mol given by Benson, further values of rate constants may be proposed: is shown to be E4 ? 3.5 ± 2 kcal/mol, of the same order as the activation energy of the corresponding metathetical step.  相似文献   

19.
The rate of the gas phase reaction has been measured spectrophotometrically over the range 480°–550°K. The rate constant fits the equation where θ = 2.303RT in kcal/mole. This result, together with the assumption that the activation energy for the back reaction is 0 ± 1 kcal/mole, allows calculation of DH (Δ? CH2? H) = 97.4 ± 1.6 kcal/mole and ΔH (Δ? CH2·) = 51.1 ± 1.6 kcal/mole. These values correspond to a stabilization energy of 0.4 ± 1.6 kcal/mole in the cyclopropylcarbinyl radical.  相似文献   

20.
A transformation exists which allows the general Riccati equation to be written in a simpler form: The transformed equation has the equivalent nonlinear Hammerstein integral equation if the kernel N(r, r′) satisfies three conditions: and and A solution of the nonlinear integral equation is devised by repeatedly integrating the Hammerstein equation. During this procedure the kernel generates an equation that contains only coefficients of β(r)0 and β(r)1. As a result, after truncating at the end of the nth cycle, it is a simple matter to write down a Padé-type approximation: all coefficients in this approximation are capable of being evaluated in terms of simple algebraic formulations of P(r), R(r), and integrals over P(r). The zeroes of the denominator of the Padé-type approximation define the points where singularities occur in β(r).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号