首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The kinetics of C6H5 reactions with n‐CnH2n+2 (n = 3, 4, 6, 8) have been studied by the pulsed laser photolysis/mass spectrometric method using C6H5COCH3 as the phenyl precursor at temperatures between 494 and 1051 K. The rate constants were determined by kinetic modeling of the absolute yields of C6H6 at each temperature. Another major product C6H5CH3 formed by the recombination of C6H5 and CH3 could also be quantitatively modeled using the known rate constant for the reaction. A weighted least‐squares analysis of the four sets of data gave k (C3H8) = (1.96 ± 0.15) × 1011 exp[?(1938 ± 56)/T], and k (n‐C4H10) = (2.65 ± 0.23) × 1011 exp[?(1950 ± 55)/T] k (n‐C6H14) = (4.56 ± 0.21) × 1011 exp[?(1735 ± 55)/T], and k (n?C8H18) = (4.31 ± 0.39) × 1011 exp[?(1415 ± 65)T] cm3 mol?1 s?1 for the temperature range studied. For the butane and hexane reactions, we have also applied the CRDS technique to extend our temperature range down to 297 K; the results obtained by the decay of C6H5 with CRDS agree fully with those determined by absolute product yield measurements with PLP/MS. Weighted least‐squares analyses of these two sets of data gave rise to k (n?C4H10) = (2.70 ± 0.15) × 1011 exp[?(1880 ± 127)/T] and k (n?C6H14) = (4.81 ± 0.30) × 1011 exp[?(1780 ± 133)/T] cm3 mol?1 s?1 for the temperature range 297‐‐1046 K. From the absolute rate constants for the two larger molecular reactions (C6H5 + n‐C6H14 and n‐C8H18), we derived the rate constant for H‐abstraction from a secondary C? H bond, ks?CH = (4.19 ± 0.24) × 1010 exp[?(1770 ± 48)/T] cm3 mol?1 s?1. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 36: 49–56, 2004  相似文献   

2.
Pulsed laser photolysis, time-resolved laser-induced fluorescence experiments have been carried out on the reactions of CN radicals with CH4, C2H6, C2H4, C3H6, and C2H2. They have yielded rate constants for these five reactions at temperatures between 295 and 700 K. The data for the reactions with methane and ethane have been combined with other recent results and fitted to modified Arrhenius expressions, k(T) = A′(298) (T/298)n exp(?θ/T), yielding: for CH4, A′(298) = 7.0 × 10?13 cm3 molecule?1 s?1, n = 2.3, and θ = ?16 K; and for C2H6, A′(298) = 5.6 × 10?12 cm3 molecule?1 s?1, n = 1.8, and θ = ?500 K. The rate constants for the reactions with C2H4, C3H6, and C2H2 all decrease monotonically with temperature and have been fitted to expressions of the form, k(T) = k(298) (T/298)n with k(298) = 2.5 × 10?10 cm3 molecule?1 s?1, n = ?0.24 for CN + C2H4; k(298) = 3.4 × 10?10 cm3 molecule?1 s?1, n = ?0.19 for CN + C3H6; and k(298) = 2.9 × 10?10 cm3 molecule?1 s?1, n = ?0.53 for CN + C2H2. These reactions almost certainly proceed via addition-elimination yielding an unsaturated cyanide and an H-atom. Our kinetic results for reactions of CN are compared with those for reactions of the same hydrocarbons with other simple free radical species. © John Wiley & Sons, Inc.  相似文献   

3.
The alkyl nitrites, C2H5ONO, n-C3H7ONO, n-C4H9ONO, and i-C4H9ONO were photolyzed at 23°C in the presence of 15NO at 366-nm incident radiation. The quantum yields of the corresponding isotopically-enriched alkyl nitrites were measured by mass spectrometry. The results indicated that only part of the absorption leads to photodecomposition. The remainder forms an electronically excited state which isotopically exchanges with 15NO. The indicated reactions of the electronically excited state RONO*, are where k3/k2 = 0.50 ± 0.10, 0.62 ± 0.20, 0.42 ± 0.06, and 0.24 ± 0.03 torr, and that k2a/k2 = 1.0, 1.0, 0.64 ± 0.04, and 0.56 ± 0.03, respectively, for C2H5ONO, n-C3H7ONO, n-C4H9ONO, and i-C4H9ONO.  相似文献   

4.
The kinetics of the reaction of OH radicals with methyl, n-propyl, and n-butyl nitrite have been studied in a discharge flow system under pseudo first-order conditions. The OH radicals were generated by the reaction of H atoms with NO2 and the concentration of OH; monitored by resonance fluorescence, was followed as a function of time in an excess of each nitrite. Values of k(CH3ONO) = (0.6 ± 0.09) × 109 dm3 mol?1 s?1 k(n – C3H7ONO) = (1.39 ± 0.20) × 109 dm3 mol?1 s?1, and k(n – C4H9ONO) = (2.89 ± 0.43) × 109 dm3 mol?1 s?1 at 295 K were obtained. These results agree with previous relative rate measurements from this laboratory but the value for k (CH3ONO) is a factor of 7 greater than the value obtained by relative rate measurements elsewhere using a different OH source.  相似文献   

5.
The rate coefficients for the gas-phase reactions of C2H5O2 and n-C3H7O2 radicals with NO have been measured over the temperature range of (201–403) K using chemical ionization mass spectrometric detection of the peroxy radical. The alkyl peroxy radicals were generated by reacting alkyl radicals with O2, where the alkyl radicals were produced through the pyrolysis of a larger alkyl nitrite. In some cases C2H5 radicals were generated through the dissociation of iodoethane in a low-power radio frequency discharge. The discharge source was also tested for the i-C3H7O2 + NO reaction, yielding k298 K = (9.1 ± 1.5) × 10−12 cm3 molecule−1 s−1, in excellent agreement with our previous determination. The temperature dependent rate coefficients were found to be k(T) = (2.6 ± 0.4) × 10−12 exp{(380 ± 70)/T} cm3 molecule−1 s−1 and k(T) = (2.9 ± 0.5) × 10−12 exp{(350 ± 60)/T} cm3 molecule−1 s−1 for the reactions of C2H5O2 and n-C3H7O2 radicals with NO, respectively. The rate coefficients at 298 K derived from these Arrhenius expressions are k = (9.3 ± 1.6) × 10−12 cm3 molecule−1 s−1 for C2H5O2 radicals and k = (9.4 ± 1.6) × 10−12 cm3 molecule−1 s−1 for n-C3H7O2 radicals. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
The velocity of the hydrogen ion catalysed hydrolysis of p-nitrophenyl-diazo-methane (I) has been measured in H2O? D2O mixtures, giving an isotopic αi = 0.49. The product isotope effect r = 5.1, determined from product analyses, combined with the (overall) solvent isotope effect kH/kD = 2.81, yields the primary kinetic isotope effect (kH/kD)I = 3.8, and the secondary kinetic isotope effect (kH/kD)II = 0.75. The CICH2COOH-catalysed hydrolysis of I in H2O? D2O mixtures gave a straight-line plot of kn/kH versus the atomic fraction n of deuterium. With four carboxylic acids, as catalysts, values of about 4.3 for the kinetic (overall) isotope effects were observed.  相似文献   

7.
Absolute (flash photolysis) and relative (FTIR-smog chamber and GC) rate techniques were used to study the gas-phase reactions of Cl atoms with C2H6 (k1), C3H8 (k3), and n-C4H10 (k2). At 297 ± 1 K the results from the two relative rate techniques can be combined to give k2/k1 = (3.76 ± 0.20) and k3/k1 = (2.42 ± 0.10). Experiments performed at 298–540 K give k2/k1 = (2.0 ± 0.1)exp((183 ± 20)/T). At 296 K the reaction of Cl atoms with C3H8 produces yields of 43 ± 3% 1-propyl and 57 ± 3% 2-propyl radicals, while the reaction of Cl atoms with n-C4H10 produces 29 ± 2% 1-butyl and 71 ± 2% 2-butyl radicals. At 298 K and 10–700 torr of N2 diluent, 1- and 2-butyl radicals were found to react with Cl2 with rate coefficients which are 3.1 ± 0.2 and 2.8 ± 0.1 times greater than the corresponding reactions with O2. A flash-photolysis technique was used to measure k1 = (5.75 ± 0.45) × 10−11 and k2 = (2.15 ± 0.15) × 10−10 cm3 molecule−1 s−1 at 298 K, giving a rate coefficient ratio k2/k1 = 3.74 ± 0.40, in excellent agreement with the relative rate studies. The present results are used to put other, relative rate measurements of the reactions of chlorine atoms with alkanes on an absolute basis. It is found that the rate of hydrogen abstraction from a methyl group is not influenced by neighboring groups. The results are used to refine empirical approaches to predicting the reactivity of Cl atoms towards hydrocarbons. Finally, relative rate methods were used to measure rate coefficients at 298 K for the reaction of Cl atoms with 1- and 2-chloropropane and 1- and 2-chlorobutane of (4.8 ± 0.3) × 10−11, (2.0 ± 0.1) × 10−10, (1.1 ± 0.2) × 10−10, and (7.0 ± 0.8) × 10−11 cm3 molecule−1 s−1, respectively. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 43–55, 1997.  相似文献   

8.
9.
The chromocene catalyst for ethylene polymerization shows a high response to hydrogen which leads directly to highly saturated polyethylenes containing methyl groups as the major terminal functionality in the polymers. At a polymerization temperature of 90°C the ratio of termination rate constants for hydrogen (kH) and ethylene (kM) is kH/kM = 3.60 × 103. The ratio of kH to the chain propagation constant (kp) is kH/kp = 4.65 × 10?1 A simple relation that can be derived from polymerization kinetics and the Quackenbos equation exists between melt index and hydrogen–ethylene ratio. A deuterium isotope effect (kH/kD) = 1.2 was calculated for the termination reaction. The overall polymerization process has an apparent activation energy of 10.1 kcal/mole. Oxygen addition studies show catalyst activity is proportional to initial divalent chromium content.  相似文献   

10.
Three coordination polymers, {[Co(C10H5N3O5)(H2O)2]·H2O}n (1), {[Mn3(C10H5N3O5)2Cl2(H2O)6]·2H2O}n (2), and {[Cu3(C10H4N3O5)2(H2O)3]·4H2O}n (3), based on a T-shaped tripodal ligand 4-(4,5-dicarboxy-1H-imidazol-2-yl)pyridine 1-oxide (H3DCImPyO), were synthesized under hydrothermal conditions. The polymers showed diverse coordination modes, being characterized by elemental analysis, infrared spectroscopy, and single-crystal X-ray structure analysis. In 1, the HDCImPyO2? generated a 1-D chain by adopting a μ2-kN, O : kN′, O′ coordination mode to bridge two Co(II) ions in two bis-N,O-chelating modes. In 2, the HDCImPyO2? adopted a μ3-kN, O : kO′, O′′ : O′′′ coordination mode to bridge two crystallographically independent Mn(II) ions, forming a 2-D hcb network with {63} topology. In 3, by adopting μ4-kN, O : kO′, O′′ : kN′′, O′′′ : O′′′′ coordination, DCImPyO3? bridged three crystallographically independent Cu(II) ions to form a 3-D framework having the stb topology.  相似文献   

11.
The elastic constant anisotropy and the core structure of wedge disclinations with strengths s = ±½ of lyotropic liquid crystals of a soluble polydiacetylene, P-4-BCMU (M w = 5.15 × 105, M n = 2.16 × 105, and M w/M n = 2.4), in chloroform was studied. The Frank elastic constant anisotropy defined by ε = (k11 ? k33)/(k11 + k33) for this polymer was determined by three different methods. The results show that the value of ε for this polymer is 0.5 (±0.05) in solid state and/or in liquid crystal state, indicating that the splay constant k11 is three time higher than the bend constant k33. This result further implies that splay is unfavorable in the liquid as it requires greater energy than bend. In the area adjacent to the core of a singularity the value of ε increases with decreasing distance to the core, indicating increasing anisotropy of the elastic constants toward the core. The influence of the elastic constant anisotropy on the optical texture of the LC polymer when viewed by polarizing light microscope is studied. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
The kinetics of the C2H5 + Cl2, n‐C3H7 + Cl2, and n‐C4H9 + Cl2 reactions has been studied at temperatures between 190 and 360 K using laser photolysis/photoionization mass spectrometry. Decays of radical concentrations have been monitored in time‐resolved measurements to obtain reaction rate coefficients under pseudo‐first‐order conditions. The bimolecular rate coefficients of all three reactions are independent of the helium bath gas pressure within the experimental range (0.5–5 Torr) and are found to depend on the temperature as follows (ranges are given in parenthesis): k(C2H5 + Cl2) = (1.45 ± 0.04) × 10?11 (T/300 K)?1.73 ± 0.09 cm3 molecule?1 s?1 (190–359 K), k(n‐C3H7 + Cl2) = (1.88 ± 0.06) × 10?11 (T/300 K)?1.57 ± 0.14 cm3 molecule?1 s?1 (204–363 K), and k(n‐C4H9 + Cl2) = (2.21 ± 0.07) × 10?11 (T/300 K)?2.38 ± 0.14 cm3 molecule?1 s?1 (202–359 K), with the uncertainties given as one‐standard deviations. Estimated overall uncertainties in the measured bimolecular reaction rate coefficients are ±20%. Current results are generally in good agreement with previous experiments. However, one former measurement for the bimolecular rate coefficient of C2H5 + Cl2 reaction, derived at 298 K using the very low pressure reactor method, is significantly lower than obtained in this work and in previous determinations. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 614–619, 2007  相似文献   

13.
Four new transitional metal supramolecular architectures, [Zn(cca)(2,2′‐bpy)]n · n(2,2′‐bpy) ( 1 ), [Cu(cca)(2,2′‐bpy)]n ( 2 ), [Zn(bpdc)(2,2′‐bpy)(H2O)]n · 0.5nDMF · 1.5nH2O ( 3 ), and [Co(bpdc)(2,2′‐bpy)(H2O)]n · nH2O ( 4 ) (H2cca = p‐carboxycinnamic acid; H2bpdc = 4,4′‐biphenyldicarboxylic acid; 2,2′‐bpy = 2,2′‐bipyridine) were synthesized by hydrothermal reactions and characterized by single crystal X‐ray diffraction, elemental analyses, and IR spectroscopy. Although the metal ions in these four compounds are bridged by linear dicarboxylic acid into 1D infinite chains, there are different π–π stacking interactions between the chains, which results in the formation of different 3D supramolecular networks. Compound 1 is of a 3D open‐framework with free 2,2′‐bpy molecules in the channels, whereas compound 2 is of a complicated 3D supramolecular network. Compounds 3 and 4 are isostructural. Both compounds have open‐frameworks.  相似文献   

14.
Two three‐dimensional (3D) lanthanide coordination polymers (CPs) of the general formula [Ln2(PDOA)3(H2O)]n · 2nH2O [Ln = Gd ( 1 ), Tb ( 2 )] were synthesized by solvothermal reactions of the corresponding rare‐earth chloride and pyrazine‐2,3‐dicarboxylic acid (H2PDOA). The CPs were structurally characterized by single‐crystal X‐ray diffraction, IR spectroscopy, thermogravimetry, and elemental analysis. CPs 1 and 2 are isostructural and crystallize in the monoclinic space group P21/c. The frameworks are constructed from dinuclear lanthanide building blocks in which the PDOA2– ions adopt three coordination modes, μ3kO;kO;kN,O, μ4kN,O;kO;kO;kO,O, and μ5kN,O;kO;kO;kO,O;kO, respectively. The Tb3+ polymer of 2 exhibits characteristic photoluminescence in the visible region. The magnetic properties of CP 1 were investigated by measuring the magnetic susceptibilities in the temperature range 1.8–300 K.  相似文献   

15.
A new ligand H2L, 1,7-di(1-phenyl-3-methyl-5-pyrazolone-4-benzylidene)diethenetriamine and its three transition metal complexes, ML · nH2O [M=Cu(II), n=2; M=Zn(II), n=0.5; M=Ni(II) (1), n=3] have been synthesized in anhydrous EtOH and characterized on the basis of elemental analyses, molar conductivities, i.r. spectra, u.v. spectra and thermal analyses. In addition, the DNA-binding properties of the ligand and its complexes have been investigated by absorption, fluorescence and viscosity measurements. The experimental results indicated that the ligand and the complex (1) can bind to DNA , but the other two complexes can’t; the binding affinity of the complex (1) is higher than that of the ligand and the intrinsic binding constant kb of the complex (1) is 7.893×105 m−1.  相似文献   

16.
n-C3H7ONO was photolyzed with 366 nm radiation at ?26, ?3, 23, 55, 88, and 120°C in a static system in the presence of NO, O2, and N2. The quantum yields of C2H5CHO, C2H5ONO, and CH3CHO were measured as a function of reaction conditions. The primary photochemical act is and it proceeds with a quantum yield ?1 = 0.38 ± 0.04 independent of temperature. The n-C3H7O radicals can react with NO by two routes The n-C3H7O radical can decompose via or react with O2 via Values of k4/k2 ? k4b/k2 were determined to be (2.0 ± 0.2) × 1014, (3.1 ± 0.6) × 1014, and (1.4 ± 0.1) × 1015 molec/cm3 at 55, 88, and 120°C, respectively, at 150-torr total pressure of N2. Values of k6/k2 were determined from ?26 to 88°C. They fit the Arrhenius expression: For k2 ? 4.4 × 10?11 cm3/s, k6 becomes (2.9 ± 1.7) × 10?13 exp{?(879 ± 117)/T} cm3/s. The reaction scheme also provides k4b/k6 = 1.58 × 1018 molec/cm3 at 120°C and k8a/k8 = 0.56 ± 0.24 independent of temperature, where   相似文献   

17.
The kinetics of the reactions of F and C1 atoms with ethylene oxide have been studied using relative rate techniques in 10–700 Torr of either nitrogen or air diluent at 295 ± 2 K; k(F + C2H4O) = (9.4 ± 1.6) × 10?11 and k(C1 + C2H4O) = (5.0 ± 0.9) × 10?12 cm3 molecule?1 s?1. The result for k(F + C2H4O) is in good agreement with the literature data. The result for k(C1 + C2H4O) is a factor of 5.6 lower than that reported previously. It seems likely that in the previous study most of the loss of C2H4O attributed to reaction with C1 atoms was actually caused by unwanted secondary reactions leading to an overestimate of k(C1 + C2H4O). © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 34: 122–125, 2002  相似文献   

18.
A sample comprising 241 -complexes LnC n H m Z k (Z = O, S, Se, Te) was used to analyze the influence of the nature, the oxidation state, and the coordination number of the central atom and the nature of the Z atom on the activity area of the lanthanide (Ln). A new system of criteria based on the concepts of the atomic and molecular Voronoi–Dirichlet polyhedra is proposed for the quantitative analysis of intermolecular contacts. This system was used to analyze the influence of steric factors on the stability of complex groups and the presence or absence of agostic interactions in the structures of 475 complexes LnC n H m , LnC n H m X k (X = F, Cl, Br), and LnC n H m Z k .  相似文献   

19.
The formulas C n H s (n; s) for helicenic hydrocarbons are treated. The restrictions onn ands are specified comprehensively in terms of inequalities. General expressions are given for the C n H s formulas of extremal helicenes and some of their subclasses: circumextremal- and circular helicenes. Sequences of formulas for extremal helicenes, viz. (n 0; s0), (n 1; s1), ..., (n k; sk), ..., are defined. Here (n 0;s 0) is said to represent ground-form helicenes, while (n k; sk) for k > 0 pertain to higher members. A higher member with the formula (n k; sk) is an extremal helicene which can be obtained byk-fold complete sedimentation of a ground form. This process corresponds to circumscribing of benzenoids. A formula index, viz.x as a function ofn ands, distinguishes different classes of helicenes and can be used to identify the formulas for ground forms and higher members. The possible C n H s formulas for helicenes and their indices are tabulated. Finally the numbers of edges in C n H s isomers are discussed.  相似文献   

20.
Nanosecond laser photolytic studies of 4-nitro-N,N-dimethylnaphthylamine (4-NDMNA) in nonpolar and polar solvents at room temperature show a transient species with an absorption maximum in the 500-510-nm range. This species is assigned to the lowest triplet excited state of 4-NDMNA. The absorption maximum of this state is independent of solvent polarity, and its lifetime is a function of the hydrogen donor efficiency of the solvent. In n-hexane the lifetime 1/k of the triplet state is 9.1 × 10?6 sec, while in acetonitrile 1/k is 2.0 × 10?7 sec. The hydrogen abstraction rate constant kH of the triplet state with tributyl tin hydride (Bu3SnH) in n-hexane is 1.7 × 107M?1·sec?1, while in the case of isopropyl alcohol as hydrogen donor, kH is 4.0 × 107M?1·sec?1. The activation energy for the hydrogen abstraction by the triplet state from Bu3SnH in deaerated n-hexane is 0.6 kcal/mol. The lack of spectral shift with increasing solvent polarity, and the appreciable hydrogen abstraction reactivity of the triplet state, also independent of solvent polarity, seem to indicate that this excited state is an n-π* state which retains its n-π* character even in polar media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号