首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethylenediamine tetraacetic acid (EDTA) terminated polyacrylamide was obtained by using the EDTA–cerium(IV) ammonium nitrate [Ce(IV)] redox initiator in the aqueous polymerization of acrylamide. The polymerization behaviors as a function of the concentration of Ce(IV), EDTA, and acrylamide as well as temperature were studied. The consumption rate of cerium(IV) depends a first-order reaction on the ceric ion concentration ([Ce(IV)]). The complex formation constant (K) and disproportionation constant (kd) of Ce(IV)–EDTA chelated complex are 1.67 × 104 and 3.77 × 10?3, respectively. The rate dependences of polymerization on monomer concentration and EDTA concentration both follow a second-order reaction in the run of initial monomer concentration ([M]i) equal to 0.2 mol dm?3. The number average molecular weight increases linearly with the ratio of [M]i/[Ce(IV)]i. The mechanism and kinetics for the polymerization was proposed. The kinetic parameters involved were determined. © 1992 John Wiley & Sons, Inc.  相似文献   

2.
The polymerization of acrylamide initiated by an ascorbic acid–peroxydisulfate redox system was studied in aqueous solution at 35 ± 0.2°C in the presence of air. The concentrations studied were [monomer] = (2.0–15.0) × 10?2 mole/liter; [peroxydisulfate] = (1.5–10.0) × 10?3 mole/liter; and [ascorbic acid] = (2.84–28.4) × 10?4 mole/liter; temperatures were between 25–50°C. Within these ranges the initial rate showed a half-order dependence on peroxydisulfate, a first-order dependence on an initial monomer concentration, and a first-order dependence on a low concentration of ascorbic acid [(2.84–8.54) × 10?4 mole/liter]. At higher concentrations of ascorbic acid the rate remained constant in the concentration range (8.54–22.72) × 10?4 mole/liter, then varied as an inverse halfpower at still higher concentrations of ascorbic acid [(22.72–28.4) × 10?4 mole/liter]. The initial rate increased with an increase in polymerization temperature. The overall energy of activation was 12.203 kcal/mole in a temperature range of 25–50°C. Water-miscible organic solvents depressed the initial rate and the limiting conversion. The viscometric average molecular weight increased with an increase in temperature and initial monomer concentration but decreased with increasing concentration of peroxydisulfate and an additive, dimethyl formamide (DMF).  相似文献   

3.
The polymerization of acrylonitrile initiated by an ascorbic acid–peroxodisulfate redox system was studied in an aqueous solution at 35°C in the presence of air. Molecular oxygen was found to have no effect on the polymerization reaction. An increase in ionic strength slightly increased the rate. The overall rate of polymerization, Rp, showed a square dependence on [monomer] and a half-order dependence on [peroxodisulfate]. A first-order dependence on [ascorbic acid] at low concentrations (<3.0 × 10?3 mol L?1) followed by a decrease in Rp at higher concentrations of ascorbic acid (>3.0 × 10?3 mol L?1) was also noted. Rp remained unchanged up to 40°C and showed a decline thereafter. Addition of catalytic amounts of cupric ions decreased the rate whereas ferric ions were found to increase the rate. Added sulfuric acid in the range (6.0?50.0) × 10?5 mol L?1 decreased the Rp.  相似文献   

4.
Amino acid-type chelating agents such as nitrilotriacetic acid (NTA), nitrilotripropionic acid (NPA), iminodiacetic acid (IDA), and ethylenediamine tetraacetic acid (EDTA) were used in combination with cerium(IV) ammonium nitrate [Ce(IV)] as the redox initiators for the aqueous polymerizations of acrylamide (AM). The polymerization behaviors and polymer qualities were studied as functions of the concentrations of Ce(IV), chelating agent, AM, as well as temperature. The performances of the chelating agent redox systems varied with the natures of the chelating agents. The NTA–Ce(IV) initiator showed the most promising polymerization rate and conversion. The blank tests for the reactions of cerium and chelating agents were also conducted for finding mechanism of formation of free radicals and determining their complex formation constants (K) and disproportionation constants (kd). The mechanism for the polymerization was proposed and the kinetic parameters were evaluated. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
The polymerization of acrylonitrile was studied with a peroxydiphosphate–ascorbic acid redox system as the initiator. The rate of polymerization increased with increasing peroxydiphosphate concentration and the initiator exponent was computed to be 0.5. It also increased with increasing monomer concentration and the monomer exponent was computed to be unity. The reaction was carried out at three different temperatures and the overall activation energy was computed to be 4.6 kcal/mol. The effect of certain surfactants on the rate of polymerization was investigated and a suitable kinetic scheme is described.  相似文献   

6.
The aqueous polymerization of acrylonitrile initiated by an acidified bromate–thiourea redox system has been studied under nitrogen atmosphere. The rate of polymerization is independent of thiourea concentration over the range 2–9 × 10?3M and reaches maximum at 9 × 10?3M. The rate varies linearly with [monomer]. The initial rate of polymerization as well as the maximum conversion increases within the range of 4–22.5 × 10?3M KBrO3, but beyond 22.5 × 10?3M the rate of polymerization decreases. The initial rate and the limiting conversion increases with increasing polymerization temperature in the range 30–45°C; and beyond 45°C they decrease. The effect of certain neutral salts, water-soluble solvents, and micelles of cationic, anionic, and nonionic surfactants on the rate of polymerization has been investigated.  相似文献   

7.
8.
The kinetics of the aqueous polymerization of methyl methacrylate initiated by potassium peroxydisulfate–citric acid catalyzed by silver ion was investigated in nitrogen atmosphere. The rate of polymerization is proportional to the square root of peroxydisulfate concentration. The initial rate increases with increasing citric acid concentration up to 15 × 10?3M, after which it decreases. The rate of polymerization also increases initially with monomer concentration and decreases at higher monomer concentration. The effects of temperature and the addition of some solvents and salts on the rate of polymerization have also been studied and a suitable kinetic scheme has been proposed for the reaction.  相似文献   

9.
The kinetics of polymerization of acrylamide (AM) initiated by manganese(III) acetate–ethoxyacetic acid (EAA) redox system in aqueous sulphuric acid was investigated in the temperature range 35–45°C. The effects of variations in [monomer], [Mn3+], [EAA], [H+], and ionic strength on the rates of monomer disappearance (Rp) and Mn3+ disappearance (?Rm) were studied. The polymerization process is initiated by the free radical arising from the oxidation of ethoxyacetic acid by Mn3+ and terminated by the mutual combination of growing polymer radicals. Based on the kinetic results, a suitable reaction scheme is proposed and the rate expressions are derived. The study on degree of polymerization supports the proposed scheme for polymerization. The various rate and thermodynamic parameters are evaluated.  相似文献   

10.
The kinetics of the graft polymerization of acrylamide initiated by ceric nitrate—dextran polymeric redox systems was studied primarily at 25°C. Following an initial period of relatively fast reaction, the rate of polymerization is first-order with respect to the concentrations of monomer and dextran and independent of the ceric ion concentration. The equilibrium constant for ceric ion—dextran complexation K is 3.0 ± 1.6 l./mole, the specific rate of dissociation of the complex, kd, is 3.0 ± 1.2 × 10?4 sec.?1, and the ratio of polymerization rate constants, kp/kt, is 0.44 ± 0.15. The number-average degree of polymerization is directly proportional to the ratio of the initial concentrations of monomer and ceric ion and increases exponentially with increasing extent of conversion. The initial rapid rate of polymerization is accounted for by the high reactivity of ceric ion with cis-glycol groups on the ends of the dextran chains. The polymerization in the slower period that follows is initiated by the breakdown of coordination complexes of ceric ions with secondary alcohols on the dextran chain and terminated by redox reaction with uncomplexed ceric ions.  相似文献   

11.
The aqueous polymerization of methacrylamide initiated by potassiumpersulfate-L-cystein hydrochloride redox system has been studied at 35±0.01 C under nitrogen atmosphere. The initial rate of polymerization has been found to be directly proportional to the monomer and activator concentration, in the range of 1.0 × 10–1 to 4.0 × 10–1 mol dm–3 and 1.25 × 10–3 to 5.0 × 10–3 mol dm–3 respectively. The order with respect to initiator has been found to be 0.5, indicating thereby that the termination takes place by bimolecular process. The overall energy of activation has been found to be 53±1 KJ/mol.  相似文献   

12.
The aqueous polymerization of acrylic acid and acrylamide initiated by peroxydiphosphate–sodium thiosulfate redox system was investigated within the temperature range of 25–35°C. The rates of polymerization were measured at different concentrations of oxidant, activator and monomer. The monomer and the initiator exponents were evaluated to be 1.12 and 0.51. The rate of polymerization decreases with increasing thiosulfate concentration. On the basis of the experimental observation of the dependence of the rate of polymerization, Rp, on various variables, a suitable kinetic scheme has been proposed and the rate parameters have been evaluated.  相似文献   

13.
Polymerization of acrylamide initiated with a pinacol–ceric ion redox system was investigated. The polymer obtained was found to contain one cerium atom in a polymer molecule. It was considered that the cerium atom was introduced into the polymer molecule by the termination reaction as there is no cerium atom in the initiating radical in the present system. A similar termination reaction was attained by ferric ion but not by cerous ion. The metal ion was considered to terminate the polymerization to form a stable polymer. Some considerations on the structure of the reaction product relating to the polymerization mechanism were discussed.  相似文献   

14.
The aqueous polymerization of methacrylic acid (MAA) initiated by a Ce4+ -glycolic acid (GA) system was observed in a sulfuric acid medium at 35 ± 0.2°C in a nitrogen atmosphere. The rate of monomer disappearance was proportional to [MAA]1 and the rate of ceric ion disappearance was proportional to [GA][Ce4+]. An increase in the reaction temperature from 30 to 45°C raised the rate and the overall activation energy was 63 kJ/mol. The molecular weight increased with a rise in [MAA] and a reduction in [Ce4+]. The effect of varying [H2SO4] was also studied.  相似文献   

15.
The kinetics of vinyl polymerization of acrylonitrile (AN) initiated by an acidic permanganate/thioacetamide (TAm) redox system have been investigated in aqueous media at 30 ± 0.2°C in nitrogen, and the rate of polymerization measured. The effect of additives like organic solvents, neutral electrolytes, and complexing agents on the rate have been assessed. Based on the experimental results, a suitable reaction scheme involving initiation by organic free radicals generated by the interaction of Mn(IV) with protonated thioacetamide and termination by Mn(III) has been suggested. Various rate and energy parameters have been evaluated.  相似文献   

16.
Conversion–time data were obtained for the polymerization of acrylamide initiated by the redox couple persulfate–thiosulfate by using a dilatometer. A plot of initial rate as a function of thiosulfate concentration shows a well-defined maximum and three distinct regions of behavior. In each region the shape of the conversion–time curves demonstrates the differences in apparent order with respect to monomer arising from changes in initiator concentration during an individual run. A reaction mechanism is proposed to explain the results, and a limiting form of the rate expression is derived for each of the three regions. The ranges of concentration studied are: persulfate, 9.5 × 10?4?4.7 × 10?2M; thiosulfate, 2 × 10?5?2 × 10?2M; initial monomer, 0.05–1.0M; and temperature, 30–50°C. Within these ranges the initial rate shows a halforder dependence on persulfate and a first-order dependence on initial monomer concentration.  相似文献   

17.
The polymerization kinetics of acrylamide (AAM) in water initiated by a ternary enzymatic system of horseradish peroxidase (HRP)/H2O2/acetylacetone (ACAC) was investigated. Conversion–time plots were obtained by dilatometry under different conditions of reaction temperatures and initial concentrations of HRP, ACAC, H2O2, and AAM. The results showed that the effect of the initial concentration of ACAC on the inhibition period was significant. The inhibition period decreases with increasing the initial concentration of ACAC. The inhibition period can be even eliminated by the use of a comparatively large amount of ACAC. From the conversion–time plots, the polymerization rate equation was obtained. Some kinetic features were explained on the basis of analysis of the reaction mechanism. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 475–481, 2012  相似文献   

18.
The kinetics of redox -initiated polymerization of acrylic acid (AA) by the systerm Mn3+-isobutyric acid (IBA) in sulfuric acid was studied in the temperature range of 35–50°C. The overall rates of polymerization (Rp), disappearance of manganic ion (?Rm), and degree of polymerization (X n), were measured with variation in [monomer], [Mn3+], [IBA], H+, μ, [Mn2+], and temperature. The polymerization is initiated by the organic free radical that develops from the Mn3+-isobutyric acid oxidation reaction. Two types of termination reactions, one by the metal ion (Mn3+) and the other by the MN3+-isobutyric acid complex are proposed to explain the kinetic results. The various rate parameters were evaluated an discussed.  相似文献   

19.
The aqueous polymerization of acrylamide initiated by ammonium persulphate/thiolactic acid has been studied at 35 ± 0.2° in nitrogen. The rate is given by k[M]1.4 [thiolactic acid]0.24 [ammonium persulphate]x, where x is nearly 0.5 and 1.0 at concentrations 0.15 mole l?1 and 0.05 mole l?1 of monomer respectively. The deviations from normal kinetics are discussed. The overall activation energy is 7.96 kcal mole?1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号