首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have reported on the results of experiments on the gas-jet synthesis of diamond from methane and hydrogen flows for various mixing conditions. An original method of separate feed of gas jet has been proposed, which makes it possible to attain a high growth rate for the diamond phase. The synthesis of diamond structures in gas-jet deposition has been studied for separate feeds of two flows (hydrogen and the mixture of hydrogen with methane) in two versions, i.e., with a lateral feed of the methane-containing mixture and axisymmetric feed. Experiments were performed under the following conditions: the temperature of the surface (activating hydrogen) 2400 K, a substrate temperature of 900–1300 K, pressure in the deposition chamber 2 × 102 Pa, gas mixture fluxes (relative to hydrogen) 1500 ncm3/min, CH4 concentration in H2 of 0.1–0.7%, and the distance from the substrate to the reactor 10 mm. In the case of a separate feed of the methanecontaining gas and hydrogen, a deposition rate of 20 μm/h was attained. In the case of an axisymmetric separate feed of the gases, a single crystal with a mass of 0.6 mg was grown, which corresponded to the deposition rate of approximately 200 μm/h.  相似文献   

2.
Laser chemical vapor deposition (LCVD) utilizes a laser to localize a CVD reaction. The process involves complex physical interactions within a very small spatial region. Experimental investigations into the dynamics of the LCVD process are limited by spatial and resolution capabilities of instrumentation. Models are developed herein using the computational fluid dynamics (CFD) code, FLUENT, that incorporate heat transfer, fluid flow, and species transport in a single integrated modeling environment. The models are used to study the carbon deposition process. Insight is gained into the relationships among the process parameters and the deposition rates and deposition rate profiles. Phenomena such as thermal diffusion and the relative importance of mass convection and mass diffusion are explored. A designed set of model cases is executed and the results are used to develop a simple polynomial expression for relating experiment conditions to deposit attributes. PACS 81.10.Bk; 81.05.Uw; 81.15.Gh; 47.50.Cd; 81.16.Mk  相似文献   

3.
宋国瑞  姚惠贞 《光学学报》1997,17(5):86-590
介绍了用激光化学汽相沉积球面微透镜的技术,首先对激光化学汽相沉积法获得球面微透镜进行了理论分析,并用计算机分析了在一定沉积技术下的微透镜厚度剖面形状及光学聚集特性。其后介绍了激光化学汽相沉积的实验装置,用该装置在平面石英玻璃衬底上,制出了平凸型氮化硅球面微透镜,并对其参量进行了测量。  相似文献   

4.
This paper presents an investigation of the modeling of the process of pyrolytic laser-induced chemical vapor deposition (LCVD) applied to study the Soret effect. LCVD is a thermally activated process characterized by strongly coupled mass and energy transport phenomena, together with chemical reactions, which are difficult to investigate experimentally. A physical and numerical model based on a commercial computational fluid dynamics package is developed and used to simulate a reactor operating at conditions of room temperature and pressure. The proposed numerical methodology will allow us to assess and analyze the effect of various factors controlling the process, and in particular the Soret effect. This numerical model is validated by comparison with the measured growth rate of the fiber. While several studies have proposed simulations of the LCVD process, this is among the first attempts at including the Soret effect in the numerical modeling at the micro-scale level. It is expected that the fundamental insights thus obtained will guide experimental investigations which can be applied to establish reactor design and process control guidelines.  相似文献   

5.
Doklady Physics - A new method of gas-phase diamond deposition with a high-velocity jet used to transport gases activated in microwave plasma to a substrate is developed. Diamond was synthesized...  相似文献   

6.
The experimental set-up of SMBI system in HL-2A and the detail structure of the molecular beam valve with cooling trap are shown in Fig.l. The valve used for producing hydrogen cluster jet is a solenoid valve S99 with a nozzle orifice of 0.2 mm diameter. The distance between the nozzle of the valve and the edge plasma is about 1.28 m. A liquid nitrogen cryogenic trap is applied for cooling the valve body and decreasing the working gas temperature. The hydrogen cluster jet used for the experiments is in fact a free jet. For real gases, the adiabatic expansion of gas through a nozzle into vacuum results in substantial cooling in the frame of the moving gas. Atoms or molecules that interact weakly at low temperature can form clusters as a result. Attractive forces between atoms can be hydrogen bonding,  相似文献   

7.
Thin silicon films were synthesized by the gas-jet electron beam plasma chemical vapor deposition method from monosilane-argon, monosilane-argon-helium, and monosilane-argon-hydrogen mixtures. Addition of argon to the argon-silane mixture increased the deposition rate of silicon films, whereas addition of helium and hydrogen to the same mixture decreased the growth rate. It is shown that the process of silicon film deposition by this method from argon-monosilane mixture is primarily governed by fast secondary electrons, and argon dilution of mixture leads to increasing concentration of fast secondary electrons and increasing deposition rate of silicon films. Dilution of the initial mixture with helium or hydrogen causes a decrease in the deposition rate either due to gas-dynamic behavior of the supersonic jet of the mixture of light and heavy gases, or due to the etching effect of metastable helium atoms or hydrogen atoms on the surface of the growing silicon film.  相似文献   

8.
Sputter deposition is a complex process; it is obvious that the energy and direction of the particles arriving at the substrate is in close relation with the transport process from the target to the substrate, it is desirable to model this transport of atoms through the background gas. The transport of sputtered Ag atoms during sputter deposition through the gas phase in the facing targets sputtering system studied by Monte Carlo simulation is presented. The model calculates the flux of the atoms arriving at the substrate, their energy, direction and number of collisions they underwent. The dependence of the deposition rates of Ag atoms on the gas pressure and the distance between the targets and substrate were investigated.  相似文献   

9.
A novel excitation scheme for Kr2 rare-gas excimer formation is developed. A pulse discharge excited Kr jet is dynamically mixed with a H2 neutral gas flow located downstream in a vacuum chamber. Rapid contact cooling of the high temperature Kr plasma jet by H2 gas collisions increases the Kr2 excimer emission at 148 nm by a factor of more than three compared with that observed without the cooling downstream. Significant decreases of both electron temperature and density in the Kr plasma when mixed with H2 gases downstream are measured with time-resolved spectroscopic methods  相似文献   

10.
Laser-assisted chemical vapour deposition (LCVD) has been extensively studied in the last two decades. A vast range of applications encompass various areas such as microelectronics, micromechanics, microelectromechanics and integrated optics, and a variety of metals, semiconductors and insulators have been grown by LCVD. In this article, we review briefly the LCVD process and present two case studies of thin film deposition related to laser thermal excitation (e.g., boron carbide) and non-thermal excitation (e.g., CrO2) of the gas phase. PACS 81.15.Fg; 81.15.Kk  相似文献   

11.
A dye-sensitized solar cell (DSC) is a solar cell that uses an anatase film as a photovoltaic device. Since the anatase film and dye play the roles of electron carrier and electron generator, respectively, in the DSC, porous anatase films are desirable. In this paper, in order to develop a low-cost fabrication process for the photovoltaic device of the DSC, photocatalytic titanium oxide film deposition was carried out by atmospheric thermal plasma CVD. Ar gas, which served as the working gas for the plasma jet and substrate, and a 20 $times$ 40 $times$ 3 mm transparent acrylic resin plate were used. Titanium tetra iso butoxide was used as feedstock. Consequently, by cooling the substrate, an anatase-dominant film could be deposited at 773 K in deposition temperature without meltdown of the substrate on the condition of 100 mm in deposition distance, even in the case of acrylic resin substrate use. By wettability and methylene-blue decoloration tests, it was confirmed that the film showed hydrophilic and decolored methylene blue perfectly by 8-h UV irradiation. Furthermore, the DSC in which the titanium oxide film deposited by this technique was included as a photovoltaic device generated a photoelectromotive force of 25 mV. From these results, these thermal plasma processes were found to have high potential for DSC fabrication.   相似文献   

12.
Dot array and line patterns of multi-walled carbon nanotubes (MWCNTs) were successfully grown by laser-induced chemical vapor deposition (LCVD) on a transparent substrate at room temperature. In the proposed technique, a Nd:YVO4 laser with a wavelength of 532 nm irradiates the backside of multiple catalyst layers (Ni/Al/Cr) through a transparent substrate to induce a local temperature rise, thereby allowing the direct writing of dense dot and line patterns of MWCNTs below 10 μm in size to be produced with uniform density on the controlled positions. In this LCVD method, a multiple-catalyst-layer with a Cr thermal layer is the central component for enabling the growth of dense MWCNTs with good spatial resolution.  相似文献   

13.
The photolytic laser chemical vapor deposition (LCVD) rate of platinum from its bishexafluoroacetylacetonate precurser has been measured in situ and in real time. Optical transmission of the 350 nm photolysis light through the deposited platinum film and a transparent glass substrate is monitored and analysed in detail. From these measurements, as well as measurements of the reflected light, the fraction of the laser beam power absorbed in the metal film is found. The latter allows a simple estimate of the laser-induced temperature rise at the metal surface. It is shown that even rather small temperature increases of the order of several tens of degrees centigrade can completely change the photolysis mechanism and hence drastically influence the photolytic LCVD rate. A simple modification of Lax's model, in which a temperature dependent thermal conductivity of the substrate is introduced, is used to describe the laser-induced heating of a strongly absorbing thin metal film on a glass substrate.  相似文献   

14.
Silicon oxide nanowires were synthesized from monosilane–argon–hydrogen mixture by the gas-jet electron-beam plasma chemical deposition method with simultaneous oxygen injection into the vacuum chamber. The synthesis was performed on monocrystalline silicon substrates covered with micron and nanometer tin catalyst particles. The nanowires are formed the via vapor–liquid–solid mechanism in the “catalyst-on-bottom” mode, in which many nanowires grow from one catalyst particle. The process of synthesizing nanowires on a substrate with catalyst consists of three stages: heating to synthesis temperature, hydrogen plasma treatment, and nanowire growth. In the substrate region corresponding to the jet axis, different structures are formed depending on the catalyst particle size. For catalyst particles under 100 nm, there are formed structures of chaotically oriented and interlaced bundles of silica nanowires. For catalyst particles of 0.3–1 micron, there are formed oriented arrays of cylindrically shaped nanowire bundles (“microropes”). Cocoon-like structures are formed for catalyst particles of more than 1 micron.We propose a model of nanowire growth by this method, which is based on nonuniform heating of a catalyst particle by a directed plasma flow. It was found that for synthesis of oriented microrope arrays the initial tin film thickness should be less than 100 nm and the synthesis process should include a hydrogen plasma treatment stage.  相似文献   

15.
An argon laser is used to induce Laser Chemical Vapor Deposition (LCVD) of platinum using platinum bihexafluoroacetyl-acetonate as precursor. The process can be photolytic or pyrolytic depending on the laser power used. These processes are studied by recording the laser light transmitted through of deposit and substrate. Photolytic deposition takes place either in the adsorbed phase or in the gaseous phase depending on the temperature induced by radiation absorption. The induced-temperature calculation using a model developed by us confirms the experimental results obtained. The influence of the substrate base temperature and the precursor product vapour pressure confirms photolytic deposition from the adsorbed phase for low powers and from the vapour phase onwards for high powers. The deposits obtained present a typical 96% Pt composition and its use in Schottky diode manufacture permit obtaining devices with good characteristics in spite of experimental limitations.  相似文献   

16.
张一川  杨宽  李唤  朱晓东 《物理学报》2016,65(14):145201-145201
本文开展了大气压甚高频感应耦合(ICP)微等离子体射流的特性与应用研究.在150 MHz甚高频,功率为90 W条件下获得温度高达上千度的温热等离子体射流,射流长度近3 cm.随着气流量的增加射流将呈现层流到湍流的转变,长度先增后减;而功率对于射流长度的影响存在着一个上限,当等离子体吸收的能量与扩散损失的能量达到平衡时,射流长度将达到最大.利用这种ICP微等离子体射流进行了微尺寸金属铜的快速成形制造,得到了球冠状和柱状铜金属件.在扫描电子显微镜下观察到沉积物表面最小颗粒尺寸远小于铜粉颗粒;X射线衍射结果显示沉积物表面存在弱氧化物峰,这是沉积过程中空气被射流卷入所致.  相似文献   

17.
The energy flux of an atmospheric‐pressure plasma jet for surface treatment has been investigated by a calorimetric probe. Generally, the investigations exhibit that the main contributions of the total energy influx from the plasma to the substrate surface originate from the neutrals regarding high gas temperature coupled with a high gas flow. The use of nitrogen as process gas shows a higher energy flux compared to oxygen and air presumably caused by increased gas temperature as well as by higher molecule formation and recombination energy of N2. Moreover, the lateral expansion of the plasma beam could be roughly determined by a spatially resolved analysis of the energy influx. A top part mounted on the nozzle, commonly used for the injection of additional precursor gases, showed a significant effect on the flow behavior and collision entailed relaxation of the excited plasma species leading to a restraining of the plasma jet. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
This paper used optical emission spectroscopy (OES) to study the gas phase in high power DC arc plasma jet chemical vapour deposition (CVD) during diamond films growth processes. The results show that all the deposition parameters (methane concentration, substrate temperature, gas flow rate and ratio of H2/Ar) could strongly influence the gas phase. C2 is found to be the most sensitive radical to deposition parameters among the radicals in gas phase. Spatially resolved OES implies that a relative high concentration of atomic H exists near the substrate surface, which is beneficial for diamond film growth. The relatively high concentrations of C2 and CH are correlated with high deposition rate of diamond. In our high deposition rate system, C2 is presumed to be the main growth radical, and CH is also believed to contribute the diamond deposition.  相似文献   

19.
The effect of temperature on the vertical growth rate of functional tin dioxide nanostructures formed by physical vapor deposition from a gas phase is studied. A model is proposed to describe the formation of tin dioxide nanocrystals. This model adequately describes the experimentally detected effect of the deposition zone temperature on the nanocrystal growth rate in the temperature range under study. An analytical relation between the growth rate of a nanowhisker, its geometric parameters, the nanowhisker material, the substrate material, and the technological parameters of its formation is revealed. The crystal growth rate is found to increase with the deposition zone temperature, which can be caused by an activation character of nucleation processes and precursor mass transport along the substrate surface and the lateral nanocrystal surface.  相似文献   

20.
The rate of cwphotolytic laser chemical vapor deposition (LCVD) of platinum is measured for 350 nm as a function of the light intensity and the metalorganic vapor pressure. The growth of the metal films is studied in situ and in real time by monitoring their optical transmission. At low intensities the transmitted light decreases monotonically with time, and the LCVD process is photolytic with its rate limiting step in the surface adlayer. At higher intensities we observe two distinct time domains: Relatively slow initial photolytic deposition with its rate limiting step in the gas phase, which is followed by much faster pyrolytic LCVD. An improved method for distinguishing between adlayer and gas-phase limiting processes is demonstrated. These observations are confirmed by studying the photolytic deposition rates while varying the thickness of the adlayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号