首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We have investigated optical properties of single gold nanorods by using an apertured-type scanning near-field optical microscope. Near-field transmission spectrum of single gold nanorod shows several longitudinal surface plasmon resonances. Transmission images observed at these resonance wavelengths show oscillating pattern along the long axis of the nanorod. The number of oscillation increases with decrement of observing wavelength. These spatial characteristics were well reproduced by calculated local density-of-states maps and were attributed to spatial characteristics of plasmon modes inside the nanorods. Dispersion relation for plasmons in gold nanorods was obtained by plotting the resonance frequencies of the plasmon modes versus the wave vectors obtained from the transmission images.  相似文献   

2.
金属中的表面等离子体共振是描述其导带电子在电磁场作用下集体振荡的一个物理概念。金属纳米颗粒由于其表面等离子体共振性质表现出独特的光学应用。本文在相关研究的基础上,综述了具备表面等离子体共振性质的不同形貌及多种复合结构的贵金属纳米材料的制备和应用,并对其发展及应用前景进行了展望。  相似文献   

3.
金属中的表面等离子体共振是描述其导带电子在电磁场作用下集体振荡的一个物理概念。金属纳米颗粒由于其表面等离子体共振性质表现出独特的光学应用。本文在相关研究的基础上,综述了具备表面等离子体共振性质的不同形貌及多种复合结构的贵金属纳米材料的制备和应用,并对其发展及应用前景进行了展望。  相似文献   

4.
In this paper the theoretical base and experimental results of a new class of fiber optical supported surface plasmon resonance spectroscopy (SPRS) transducer is given. Surface plasmons were excited by polychromatic light, and the resonant excitation is detected as an intensity minimum in the measured spectra at certain wavelengths. The excitation takes place at the end zone of a multimode fiber coated with a thin surface plasmon resonance supporting metal layer. As examples for the large application field of this transducer a fiber optical immunosensor for the detection of antibodies against bovine serum albumin and a gas sensor for remote detection of tetrachloroethene was constructed and tested successfully. The sensors were constructed following the theoretical predictions for an optimal performance.  相似文献   

5.
Surface plasmon resonance (SPR) imaging affords label-free monitoring of biomolecule interactions in an array format. A surface plasmon conducting metal thin film is required for SPR measurements. Gold thin films are traditionally used in SPR experiments as they are readily functionalized with thiol-containing molecules through formation of a gold-sulfur bond. The lability of this gold-thiol linkage upon exposure to oxidizing conditions and ultraviolet light renders these surfaces incompatible with light-directed synthetic methods for fabricating DNA arrays. It is shown here that applying a thin carbon overlayer to the gold surface yields a chemically robust substrate that permits light-directed synthesis and also supports surface plasmons. DNA arrays fabricated on these carbon-metal substrates are used to analyze two classes of biomolecular interactions: DNA-DNA and DNA-protein. This new strategy allows the combinatorial study of binding interactions directly from native, unmodified biomolecules of interest and offers the possibility of discovering new ligands in complex mixtures such as cell lysates.  相似文献   

6.
We report the properties of plasmons in dense planar arrays of silver single and double nanostructures with various geometries fabricated by electron beam lithography (EBL) as a function of their size and spacing. We demonstrate a strong plasmon coupling mechanism due to near-field dipolar interactions between adjacent nanostructures, which produces a major red shift of the localized surface plasmon resonance (LSPR) in silver nanoparticles and leads to strong maximum electric field enhancements in a broad spectral range. The extinction spectra and maximum electric field enhancements are theoretically modeled by using the finite element method. Our modeling revealed that strong averaged electric field enhancements of up to 60 in visible range and up to 40 in mid-infrared result from hybridization of multipolar resonances in such dense nanostructures; these are important for applications in surface enhanced spectroscopies.  相似文献   

7.
The localized and propagating surface plasmon co-enhanced Raman scattering of 4-mercaptopyridine was observed based on evanescent field excitation. The most effective coupling of the localized and propagating surface plasmons resulted in a >50 times enhanced signal relative to signals obtained on vacuum-deposited silver film.  相似文献   

8.
The plasmon hybridization method is generalized to calculate the plasmon modes and optical properties of solid and dielectric-core/metallic-shell particles of geometrical structures that can be described using separable curvilinear coordinates. The authors present a detailed discussion of the plasmonic properties of hollow metallic nanowires with dielectric cores and core/shell structures of oblate and prolate spheroidal shapes. They show that the plasmon frequencies of these particles can be expressed in a common form and that the plasmon modes of the core/shell structures can be viewed as resulting from the hybridization of the solid particle plasmons associated with the outer surface of the shell and of the cavity plasmons associated with the inner surface.  相似文献   

9.
尹海峰  张红  岳莉 《物理化学学报》2014,30(6):1049-1054
基于含时密度泛函理论研究了氮掺杂六角石墨烯纳米结构的近红外等离激元.沿一定的激发方向,边长为1 nm的氮掺杂六角石墨烯纳米结构在整个近红外光谱区都有强度较大的等离激元共振.参与这种近红外等离激元模式共振的电子在六角纳米结构的中心和边缘区域之间来回振荡.近红外等离激元共振模式的形成依赖于氮掺杂的位置和纳米结构的尺度大小.只有当氮掺杂在靠近边界区域时体系才会在近红外光谱区形成等离激元共振模式.对于边长小于1 nm的六角石墨烯纳米结构,氮掺杂后体系不能在近红外光谱区形成等离激元共振模式.  相似文献   

10.
Selected properties of donor–acceptor energy transfer in the presence of surface plasmon coupled emission (SPCE) on metallic nanofilms are demonstrated. These properties of surface plasmon mediated energy transfer (SPMET) are for the first time compared to those of traditional energy transfer (ET) based on the same donor–acceptor system. The presence of plasmons significantly accelerates energy transfer as revealed by the results of fluorescence intensity decay. In particular, the rise time of acceptor fluorescence intensity upon donor excitation is 10 times shorter in the presence of SPCE. It is also observed that contrary to ET the sensibilized acceptor emission in SPMET is totally linearly polarized.  相似文献   

11.
The shape anisotropy of nanorods gives rise to two distinct orientational modes by which nanorods can be assembled, i.e., end-to-end and side-by-side, analogous to the well-known H and J aggregation in organic chromophores. Optical absorption spectra of gold nanorods have earlier been observed to show a red-shift of the longitudinal plasmon band for the end-to-end linkage of nanorods, resulting from the plasmon coupling between neighboring nanoparticles, similar to the assembly of gold nanospheres. We observe, however, that side-by-side linkage of nanorods in solution shows a blue-shift of the longitudinal plasmon band and a red-shift of the transverse plasmon band. Optical spectra calculated using the discrete dipole approximation method were used to simulate plasmon coupling in assembled nanorod dimers. The longitudinal plasmon band is found to shift to lower energies for end-to-end assembly, but a shift to higher energies is found for the side-by-side orientation, in agreement with the optical absorption experiments. The strength of plasmon coupling was seen to increase with decreasing internanorod distance and an increase in the number of interacting nanorods. For both side-by-side and end-to-end assemblies, the strength of the longitudinal plasmon coupling increases with increasing nanorod aspect ratio as a result of the increasing dipole moment of the longitudinal plasmon. For both the side-by-side and end-to-end orientation, the simulation of a dimer of nanorods having dissimilar aspect ratios showed a longitudinal plasmon resonance with both a blue-shifted and a red-shifted component, as a result of symmetry breaking. A similar result is observed for a pair of similar aspect ratio nanorods assembled in a nonparallel orientation. The internanorod plasmon coupling scheme concluded from the experimental results and simulations is found to be qualitatively consistent with the molecular exciton coupling theory, which has been used to describe the optical spectra of H and J aggregates of organic molecules. The coupled nanorod plasmons are also suggested to be electromagnetic analogues of molecular orbitals. Investigation of the plasmon coupling in assembled nanorods is important for the characterization of optical excitations and plasmon propagation in these nanostructures. The surface plasmon resonance shift resulting from nanorod assembly also offers a promising alternative for analyte-sensing assays.  相似文献   

12.
Tuning plasmons on nano-structured substrates for NIR-SERS   总被引:1,自引:0,他引:1  
Surface-Enhanced Raman Spectroscopy (SERS) is a very sensitive and selective technique for detecting surface species. Colloidal crystal-templated 'inverse opal' nanostructured gold films have been demonstrated to be excellent SERS substrates by various researchers around the globe. However, visible excitation laser sources commonly used in SERS experiments can cause photochemical reactions on the surface as well as fluorescence from the adsorbed molecules. A way to circumvent this possibility is the use of Near Infra-Red (NIR) laser sources. This demands appropriate design of substrates for NIR-SERS in order to obtain maximum enhancement of signals from analytes. In the current paper, we use systematic variation of sphere size and electrochemical control over film height to tune plasmons on such nanovoid substrates. We use plasmon maps as a tool for predicting NIR-SERS enhancements recorded with a 1064 nm laser source for benzenethiol as the probe molecule. Direct correlation is observed between Raman enhancements and plasmonic resonances with ingoing and outcoming radiation. Our study demonstrates the feasibility of plasmon engineering and the predictive power of their mapping on our substrates. It also demonstrates the ability to design reproducible NIR-SERS substrates and its empirical fruition.  相似文献   

13.
We report on the identification of surface plasmons in individual gold dumbbell-shaped nanoparticles (AuDBs), as well as AuDBs coated with silver. We use spatially resolved electron energy-loss spectroscopy in a scanning electron microscope, which allows us to map plasmon-energy and intensity spatial distributions. Two dominant plasmon resonances are experimentally resolved in both AuDBs and silver-coated AuDBs. The intensity of these features is peaked either at the tips or at the sides of the nanoparticles. We present boundary element method simulations in good agreement with the experiment, allowing us to elucidate the nature of such modes. While the lower-energy, tip-focused plasmon is of longitudinal character for all dumbbells under consideration, the second side-bound plasmon has a more involved symmetry, starting as a longitudinal quadrupole in homogeneous AuDBs and picking up transversal components when silver coating is added. The longitudinal dipolar mode energy is found to blue-shift upon coating with silver. We find that the substrate produces sizable shifts in the plasmons of silver-coated AuDBs. Our analysis portraits a complex plasmonic scenario in metal nanoparticles coated with silver, including a transition from the original homogeneous gold dumbbell plasmons to the modes of homogeneous silver rods. We believe that these findings can have potential application to plasmon engineering.  相似文献   

14.
The pursuit of nanoscale photonics and molecular optoelectronics has stimulated a lot of interests in scanning tunneling microscope (STM) induced molecular emission. In this work, we have introduced a full quantum mechanical approach instead of the previous semiclassical theory to consider the quantized surface plasmon modes in this system. By considering the mutual interactions between a single molecule and the quantized surface plasmon, we have studied the molecular electroluminescence from STM tunnel junctions. Due to the coupling to the surface plasmons, the spontaneous emission rate and the fluorescence intensity of themolecule are both enormously enhanced. In particular, we show that when the radiative decay rate becomes comparable to the vibrational damping rate, hot-electroluminescence can be observed. All these findings are believed to be instructive for further developments of both molecular electronics and photonics.  相似文献   

15.
Near-field interactions between plasmons and molecules are treated in a simple unified approach. The density matrix of a molecule is treated with linear-response random phase approximation and the plasmons are treated classically. The equations of motion for the combined system are linear, governed by a simple Liouvillian operator for the polariton (plasmon+molecule excitation) dynamics. The dynamics can be followed in time or directly in frequency space where a trace formula for the transmission is presented. A model system is studied, metal dots in a forklike arrangement, coupled to a two level system with a large transition-dipole moment. A Fano-type resonance [Phys. Rev. 103, 1202 (1956)] develops when the molecular response is narrower than the width of the absorption spectrum for the plasmons. We show that the direction of the dipole of the molecule determines the direction the polariton chooses. Further, the precise position of the molecule has a significant effect on the transfer.  相似文献   

16.
Plasmons are investigated in free nanoscale Na, Mg, and K metal clusters using synchrotron radiation-based x-ray photoelectron spectroscopy. The core levels for which the response from bulk and surface atoms can be resolved are probed over an extended binding energy range to include the plasmon loss features. In all species the features due to fundamental plasmons are identified, and in Na and K also those due to either the first order plasmon overtones or sequential plasmon excitation are observed. These features are discussed in view of earlier results for planar macroscopic samples and free clusters of the same materials.  相似文献   

17.
金纳米棒在紫外-可见-近红外(UV-Vis-NIR)波段具有独特的可调节表面等离子体共振(SPR)光学特性,其良好的稳定性、低生物毒性、亮丽的色彩和在催化、信息存储、生物医学等领域广阔的应用前景受到相关研究领域的广泛关注.结合已有的研究基础,本文主要综述了金纳米棒光学性质的研究进展,包括表面等离子体共振、局域场增强效应、共振耦合效应及荧光特性,并对金纳米棒的应用做了展望.  相似文献   

18.
We report about the synthesis and optical properties of a composite metal-insulator-semiconductor nanowire system which consists of a wet-chemically grown silver wire core surrounded by a SiO2 shell of controlled thickness, followed by an outer shell of highly luminescent CdSe nanocrystals. With microphotoluminescence (micro-PL) experiments, we studied the exciton-plasmon interaction in individual nanowires and analyzed the spatially resolved nanocrystal emission for different nanowire length, SiO2-shell thickness, nanocrystal shape, pump power, and emission polarization. For an SiO2 spacer thickness of approximately 15 nm, we observed an efficient excitation of surface plasmons by excitonic emission of CdSe nanocrystals. For nanowire lengths up to approximately 10 microm, the composite metal-insulator-semiconductor nanowires ((Ag)SiO2)CdSe act as a waveguide for 1D-surface plasmons at optical frequencies with efficient photon outcoupling at the nanowire tips, which is promising for efficient exciton-plasmon-photon conversion and surface plasmon guiding on a submicron scale in the visible spectral range.  相似文献   

19.
The fundamental understanding of the subtle interactions between molecules and plasmons is of great significance for the development of plasmon‐enhanced spectroscopy (PES) techniques with ultrahigh sensitivity. However, this information has been elusive due to the complex mechanisms and difficulty in reliably constructing and precisely controlling interactions in well‐defined plasmonic systems. Herein, the interactions in plasmonic nanocavities of film‐coupled metallic nanocubes (NCs) are investigated. Through engineering the spacer layer, molecule–plasmon interactions were precisely controlled and resolved within 2 nm. Efficient energy exchange interactions between the NCs and the surface within the 1–2 nm range are demonstrated. Additionally, optical dressed molecular excited states with a huge Lamb shift of ≈7 meV at the single‐molecule (SM) level were observed. This work provides a basis for understanding the underlying molecule–plasmon interaction, paving the way for fully manipulating light–matter interactions at the nanoscale.  相似文献   

20.
The use of nanoparticles (NPs) can substantially improve the analytical performance of surface plasmon resonance imaging (SPRi) in general, and in DNA sensing in particular. In this work, we report on the modification of the gold surface of commercial biochips with gold nanospheres, silica-coated gold nanoshells, and silver nanoprisms, respectively. The NPs were tethered onto the surface of the chip and functionalized with a DNA probe. The effects of tethering conditions and varying nanostructures on the SPRi signals were evaluated via hybridization assays. The results showed that coupling between planar surface plasmons and electric fields, generated by localized surface plasmons of the NPs, is mandatory for signal enhancement. Silver nanoprisms gave the best results in improving the signal change at a target DNA concentration of <50 nM by +50 % (compared to a conventional SPRi chip). The limit of detection for the target DNA was 0.5 nM which is 5 times less than in conventional SPRi.
Figure
?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号