首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王振宁  江美福  宁兆元  朱丽 《物理学报》2008,57(10):6507-6512
用射频磁控共溅射方法在不同温度的单晶硅基片上生长薄膜,然后在800℃真空环境下对薄膜进行退火处理,成功获得了结晶状态良好的Zn2GeO4多晶薄膜.利用X射线衍射(XRD),X射线光电子能谱(XPS)和原子力显微镜(AFM)对薄膜进行了结构、成分和形貌分析,研究了基片温度对三者的影响. 结果显示,当基片温度升高到400℃以上时,薄膜中的Zn2GeO4晶粒在(220)方向上显示出了明显的择优取向. 当基片温度在500—600℃范围内,有利于GeO2结晶相的形成. XPS显示薄膜中存在着Zn2GeO4,GeO2,GeO,ZnO四种化合态. 同时,随着基片温度的升高,晶粒尺寸增大且薄膜表面趋于平整. 薄膜的光致发光在绿光带存在中心波长为530和550nm两个峰,应该归因于主体材料Zn2GeO4中两个不同的Ge2+的发光中心. 关键词: 射频磁控溅射 2GeO4')" href="#">Zn2GeO4 荧光体  相似文献   

2.
A method has been described for encapsulating Ge in a fullerene cage using GeO2 and a graphite composite rod as anode and graphite as cathode. Annealing in an inert atmosphere before arcing, and the amount of GeO2 in the rod determined the yield of Ge doped metallofullerene. Solvent extraction using soxlet in inert atmosphere followed by calcination in air was used to isolate metallofullerene from the soot. The insertion of Ge inside the fullerene was proven by ultra violet–visible absorption spectroscopy, matrix assisted laser desorption ionization-time of flight mass spectroscopy, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy.  相似文献   

3.
Substoichiometric germanium oxide thin films were prepared by evaporation of GeO2 powder. The as-deposited samples showed a luminescence band in the visible range. Hydrogen was used to passivate the dangling bond defects and therefore to determine the origin of photoluminescence in the germanium oxide films. Hydrogen was introduced in the films from an electron cyclotron resonance (ECR) plasma source during or after the evaporation. The films hydrogenated during evaporation contain little oxygen because of an etching mechanism. In the post-hydrogenated films, the oxygen content is higher. With the hydrogenation treatment, the oxygen dangling bonds are suppressed. It is proposed that the photoluminescence in the visible range is attributed to the structural defects.  相似文献   

4.
The results of the investigation of the electronic structure of the conduction band in the energy range 5–25 eV above the Fermi level EF and the interfacial potential barrier upon deposition of aziridinylphenylpyrrolofullerene (APP-C60) and fullerene (C60) films on the surface of the real germanium oxide ((GeO2)Ge) have been presented. The content of the oxide on the (GeO2)Ge surface has been determined using X-ray photoelectron spectroscopy. The electronic properties have been measured using the very low energy electron diffraction (VLEED) technique in the total current spectroscopy (TCS) mode. The regularities of the change in the fine structure of total current spectra (FSTCS) with an increase in the thickness of the APP-C60 and C60 coatings to 7 nm have been investigated. A comparison of the structures of the FSTCS maxima for the C60 and APP-C60 films has made it possible to reveal the energy range (6–10 eV above the Fermi level EF) in which the energy states are determined by both the π* and σ* states and the FSTCS spectra have different structures of the maxima for the APP-C60 and unsubstituted C60 films. The formation of the interfacial potential barrier upon deposition of APP-C60 and C60 on the (GeO2)Ge surface is accompanied by an increase in the work function of the surface EvacEF by the value of 0.2–0.3 eV, which corresponds to the transfer of the electron density from the substrate to the organic films under investigation. The largest changes occur with an increase in the coating thickness to 3 nm, and with further deposition of APP-C60 and C60, the work function of the surface changes only slightly.  相似文献   

5.
This paper presents the results of the investigation of the interface potential barrier and vacant electronic states in the energy range of 5 to 20 eV above the Fermi level (EF) in the deposition of perylene tetracarboxylic dianhydride (PTCDA) films on the oxidized germanium surface ((GeO2)Ge). The concentration of oxide on the (GeO2)Ge surface was determined by X-ray photoelectron spectroscopy. In the experiments, we used the recording of the reflection of a test low-energy electron beam from the surface, implemented in the mode of total current spectroscopy. The theoretical analysis involves the calculation of the energy and spatial distribution of the orbitals of PTCDA molecules by the density functional theory (DFT) using B3LYP functional with the basis 6-31G(d), followed by the scaling of the calculated values of the orbital energy according to the procedure well-proven in the studies of small organic conjugated molecules. The pattern of changes in the fine structure of the total current spectra with increasing thickness of the PTCDA coating on the (GeO2)Ge surface to 6 nm was studied. At energies below 9 eV above EF, there is a maximum of the density of unoccupied electron states in the PTCDA film, formed mainly by π* molecular orbitals. The higher density maxima of unoccupied states are of σ* nature. The formation of the interface potential barrier in the deposition of PTCDA at the (GeO2)Ge surface is accompanied by an increase in the work function of the surface, EvacEF, from 4.6 ± 0.1 to 4.9 ± 0.1 eV. This occurs when the PTCDA coating thickness increases to 3 nm, and upon further deposition of PTCDA, the work function of the surface does not change, which corresponds to the model of formation of a limited polarization layer in the deposited organic film.  相似文献   

6.
Optical transmission spectra of GeO2 films irradiated with silicon ions and subjected to postimplantation annealing in the regime of silicon nanocrystal formation are analyzed. It is shown that point defects form in the films after irradiation with doses D ~ 1020 m?2: germanium electron centers, neutral oxygen vacancies, and Ge2+ centers, which have been annealed at a temperature of 1000°C for an hour. At D ≥ 1 × 1021 m?2, more complex defects arise in the films, which are only partially annealed under the same conditions.  相似文献   

7.
We have investigated cathodeluminescence (CL) of Ge implanted SiO2:Ge and GeO2:Ge films. The GeO2 films were grown by oxidation of Ge substrate at 550 °C for 3 h in O2 gas flow. The GeO2 films on Ge substrate and SiO2 films on Si substrate were implanted with Ge-negative ions. The implanted Ge atom concentrations in the films were ranging from 0.1 to 6.0 at%. To produce Ge nanoparticles the SiO2:Ge films were thermally annealed at various temperatures of 600-900 °C for 1 h in N2 gas flow. An XPS analysis has shown that the implanted Ge atoms were partly oxidized. CL was observed at wavelengths around 400 nm from the GeO2 films before and after Ge-implantation as well as from SiO2:Ge films. After Ge-implantation of about 0.5 at% the CL intensity has increased by about four times. However, the CL intensity from the GeO2:Ge films was several orders of magnitude smaller than the intensity from the 800 °C-annealed SiO2:Ge films with 0.5 at% of Ge atomic concentration. These results suggested that the luminescence was generated due to oxidation of Ge nanoparticles in the SiO2:Ge films.  相似文献   

8.
GeH4 is thermally cracked over a hot filament depositing 0.7-15 ML Ge onto 2-7 nm SiO2/Si(1 0 0) at substrate temperatures of 300-970 K. Ge bonding changes are analyzed during annealing with X-ray photoelectron spectroscopy. Ge, GeHx, GeO, and GeO2 desorption is monitored through temperature programmed desorption in the temperature range 300-1000 K. Low temperature desorption features are attributed to GeO and GeH4. No GeO2 desorption is observed, but GeO2 decomposition to Ge through high temperature pathways is seen above 750 K. Germanium oxidization results from Ge etching of the oxide substrate. With these results, explanations for the failure of conventional chemical vapor deposition to produce Ge nanocrystals on SiO2 surfaces are proposed.  相似文献   

9.
We have carried out first-principles molecular dynamics simulations of glass and liquid germanium dioxide (GeO2) over a wide range of pressure. Our results show that in the glass GeO2 system nearly all Ge–O coordination environments are fourfold at low compression, whereas at high compression five- and sixfold coordination types coexist. In the liquid GeO2 system although most Ge–O coordination environments are fourfold, some threefold coordination types exist at low compression. Pentahedral units also exist in the liquid state while less than that in the glass state. At high compression, pentahedral units disappear and GeO6 octahedron is dominant in the liquid state going with some sevenfold coordination.  相似文献   

10.
《Solid State Ionics》2006,177(19-25):1733-1736
Thin films of La1.61GeO5−δ, a new oxide ionic conductor, were fabricated on dense polycrystalline Al2O3 substrates by a pulsed laser deposition (PLD) method and the effect of the film thickness on the oxide ionic conductivity was investigated on the nanoscale. The deposition parameters were optimized to obtain La1.61GeO5−δ thin films with stoichiometric composition. Annealing was found necessary to get crystalline La1.61GeO5−δ thin films. It was also found that the annealed La1.61GeO5−δ film exhibited extraordinarily high oxide ionic conductivity. Due to the nano-size effects, the oxide ion conductivity of La1.61GeO5−δ thin films increased with the decreasing thickness as compared to that in bulk La1.61GeO5−δ. In particular, the improvement in conductivity of the film at low temperature was significant .The electrical conductivity of the La1.61GeO5−δ film with a thickness of 373 nm is as high as 0.05 S cm 1 (log(σ/S cm 1) =  1.3) at 573 K.  相似文献   

11.
Microlens arrays of high-refractive-index glass GeO2-SiO2 were fabricated by femtosecond laser lithography assisted micromachining. GeO2-SiO2 thin glass films, which were deposited by plasma-enhanced chemical vapor deposition, have a refractive index of 1.4902 and exhibit high transparency at wavelengths longer than 320 nm. Using a femtosecond laser, three-dimensional patterns were written inside resists on GeO2-SiO2 films, and then the patterns were transferred to the underlying films by CHF3 and O2 plasma treatments. This combined process enabled us to obtain uniform microlens structures with a diameter of 38 μm. The heights of the transferred lenses were approximately one-quarter the height of the resist patterns, due to differences in the plasma etching rates between GeO2-SiO2 and the resist. The lens surfaces were smooth. When 632.8-nm-wavelength He-Ne laser light was normally coupled to the lenses, focal spots with a diameter of 3.0 μm were uniformly observed. The combined process was effective in fabricating three-dimensional surfaces of inorganic optical materials.  相似文献   

12.
Germanium dioxide (GeO2) aqueous solutions are facilely prepared and the corresponding anode buffer layers (ABLs) with solution process are demonstrated. Atomic force microscopy, X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy measurements show that solution-processed GeO2 behaves superior film morphology and enhanced work function. Using GeO2 as ABL of organic light-emitting diodes (OLEDs), the visible device with tris(8-hydroxy-quinolinato)aluminium as emitter gives maximum luminous efficiency of 6.5 cd/A and power efficiency of 3.5 lm/W, the ultraviolet device with 3-(4-biphenyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole as emitter exhibits short-wavelength emission with peak of 376 nm, full-width at half-maximum of 42 nm, maximum radiance of 3.36 mW/cm2 and external quantum efficiency of 1.5%. The performances are almost comparable to the counterparts with poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate) as ABL. The current, impedance, phase and capacitance as a function of voltage characteristics elucidate that the GeO2 ABL formed from appropriate concentration of GeO2 aqueous solution favors hole injection enhancement and accordingly promoting device performance.  相似文献   

13.
GeO2 films with germanium nanocrystals (NCs) were deposited from supersaturated GeO vapor with subsequent dissociation on Ge:GeO2. The films were studied using photoluminescence (PL), Raman scattering, IRspectroscopy techniques. Ge NCs in initial film have sizes about 6–8 nm and have no visible PL signal. The broad green-red PL peak was detected in Ge:GeO2 films after thermal annealings. According to effective mass approach, maximum of PL signal from such relatively big Ge NCs should be in IR region. The experimentally observed PL signal is presumably originated due to quasi-direct L 1-L 3’ optical transitions “folded” in germanium NCs. The article is published in the original.  相似文献   

14.
We present here the experimental, theoretical, and numerical investigations of Kerr solitons generated by self-organization in black and yellow high quality bismuth germanium oxide (Bi12GeO20) single crystals. A picosecond laser beam of increasing power induces competing cubic and quintic nonlinearities. The numerical evolution of two-dimensional complex cubic-quintic nonlinear Schrödinger equation with measured values of nonlinearities shows the compensation of diffraction by competing cubic and quintic nonlinearities of opposite sign, i.e., the self-generation and stable propagation of solitons. Experiments as well as numerical simulations show higher nonlinearity in the black Bi12GeO20 than in the more transparent yellow one.  相似文献   

15.
LISICON thin films have been prepared with RF sputtering and subsequent heat-treatment. The crystal phases of sputtered films depend on the sputtering conditions, especially the target composition and ambient gas atmosphere. Though the as-sputtered films in Ar-O2 mixed gas (target composition: Li3Zn0.5GeO4+0.5 ZnO, gas pressure: 9×10-2 Torr, oxygen gas content: 74.6%) were amorphous; LISICON single phase thin films were obtained after annealing at 600°C for 6 h. The conductivity of the film at 500°C is 5×10-3ω-1cm-1 which is slightly lower than that for ceramic Li3Zn0.5GeO4.  相似文献   

16.
The coherent X-ray scattering for momentum transfer, k, between 0·025 and 15·0 Å?1 has been measured for a series of sputtered amorphous Ge films prepared at various substrate temperatures, T s, between 0 and 350°C. Differences in the radial distribution function (RDF) of films of different T s have been determined by an accurate differential scattering technique. The small angle scattering (SAS) of the films is less than 100 electron units for k < 1 Å?1. From a combination of SAS, RDF and scanning electron microscope studies, it is concluded that an observed increase in film density with increasing T s occurs through a reduction in the number of voids about 7 Å or less in diameter. No variation of bond length with T s is found. With increasing T s, there is an increase in first and second-neighbour coordination and a reduction in bond angle distortion.

The rate of change of coordination, C, with density, ρ0, is found to be d ln C/d ln ρ0 = 0·6±0·2. Using a new, general theory of the dependence of the RDF on the dihedral angle distribution, P(θ), it is shown that with increasing T s there is an increased probability of dihedral angles corresponding to the staggered configuration. For all films, the experimental RDF between r = 4·5 and 6·2 Å agrees with a nearly random P(θ) distribution. Comparison of experimental RDF's of crystalline and amorphous Ge indicates the static distortion of the first-neighbour bond length has a standard deviation of only about 0·04 Å.  相似文献   

17.
Using the methods of scanning and spectral laser ellipsometry and Raman scattering spectroscopy, GeO2 films containing Ge nanoclusters with a Ge/GeO2 mole ratio of 1: 1 are studied. A substantial difference is found between the experimental spectral dependence of the complex permittivity of the films and the one calculated for the effective medium in the Bruggeman model. The distinction can be qualitatively explained by the influence of the quantum-size effect. With the use of theoretical models for quantitative analysis, this approach will make it possible to determine the phase composition and dimensions of the nanoclusters of germanium in a contactless way without destructing the film.  相似文献   

18.
The Ge/ZnO multilayer films have been prepared by rf magnetron sputtering. The effects of annealing on the microstructure and photoluminescence properties of the multilayers have been investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectrometry and photoluminescence (PL) spectrometry. The investigation of structural properties indicates that Zn2GeO4 has been formed with (2 2 0) texture and Zn deficiency from Ge/ZnO multilayer films in the process of annealing. However, lower Zn/Ge ratio can be improved by annealing. The annealed multilayers show three main emission bands at 532, 700, and 761 nm, which originate from the transition between oxygen vacancy () and Zn vacancies (VZn), the radiative recombination of quantum-confined excitons (QCE) in Ge nanocrystals, and the optical transition in the GeO color centers, respectively. Finally, the fabrication of thin film Zn2GeO4 from Ge/ZnO multilayer films by annealing at low temperature provides another approach to prepare the green-emitting oxide phosphor film:Zn2GeO4:Mn.  相似文献   

19.
《Ultrasonics》1986,24(2):88-92
The velocity and attenuation of hypersonic waves propagating along the [100] or [110] axis of undoped and Cr-doped Bi12GeO20 have been measured at frequencies from 0.76 to 1.65 GHz and at temperatures of 4.5, 24, 77 and 293 K. The second-order elastic constants and Debye temperature have been calculated from these results. The measurements and the results of the calculations are used to interpret the attenuation in terms of collisions between low-energy phonons, constituting the sound wave, and thermal phonons. The thermal-phonon lifetime and Grüneisen constant have been estimated for undoped and doped material.  相似文献   

20.
Germanium films have been rf sputter deposited on a variety of substrates. A new techniques has been developed to control doping concentrations of the films at predetermined levels for bothp-type as well asn-type films. The hole concentrations of these films could be varied from 1015 to 2×1018/cm3 while the electron concentrations could be varied from 1015 to 5×1017/cm3 using this technique. Transmission electron microscope studies have been made to study the crystalline quality of the films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号