首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A highly active alkyne metathesis catalyst is realized by replacing the amide ligands of a molybdenum(VI) trisamide alkylidyne complex with silanol groups from incompletely condensed POSS (polyhedral oligomeric silsesquioxane) ligands. This catalyst serves as an effective homogeneous mimic of an amorphous silica-supported catalyst. Reactivities of various catalytic mixtures are reported along with an X-ray structure of the aniline-coordinated amidodisiloxymolybdenum(VI) alkylidyne complex.  相似文献   

2.
Alkyne metathesis catalysts composed of molybdenum(VI) propylidyne and multidentate tris(2‐hydroxylbenzyl)methane ligands have been developed, which exhibit excellent stability (remains active in solution for months at room temperature), high activity, and broad functional‐group tolerance. The homodimerization and cyclooligomerization of monopropynyl or dipropynyl substrates, including challenging heterocycle substrates (e.g., pyridine), proceed efficiently at 40–55 °C in a closed system. The ligand structure and catalytic activity relationship has been investigated, which shows that the ortho groups of the multidentate phenol ligands are critical to the stability and activity of such a catalyst system.  相似文献   

3.
A highly active and durable fumed silica-supported heterogeneous molybdenum(VI) catalyst was applied to ring closing alkyne metathesis and cyclooligomerization reactions to give high yields of metathesis products near room temperature conditions.  相似文献   

4.
Ring-closing metathesis (RCM) is the key step in a recently reported synthesis of salicylihalamide and related model compounds. Experimentally, the stereochemistry of the resulting cycloolefin (cis/trans) depends strongly on the substituents that are present in the diene substrate. To gain insight into the factors that govern the observed stereochemistry, density functional theory (DFT) calculations have been carried out for a simplified dichloro(2-propylidene)(imidazole-2-ylidene)ruthenium catalyst I, as well as for the real catalyst II with two mesityl substituents on the imidazole ring. Four model substrates are considered, which are closely related to the systems studied experimentally, and in each case, two pathways A and B are possible since the RCM reaction can be initiated by coordination of either of the two diene double bonds to the metal center. The first metathesis yields a carbene intermediate, which can then undergo a second metathesis by ring closure, metallacycle formation, and metallacycle cleavage to give the final cycloolefin complex. According to the DFT calculations, the stereochemistry is always determined in the second metathesis reaction, but the rate-determining step may be different for different catalysts, substrates, and pathways. The ancillary N-heterocyclic carbene ligand lies in the Ru-Cl-Cl plane in the simplified catalyst I, but is perpendicular to it in the real catalyst II, and this affects the relative energies of the relevant intermediates and transition states. Likewise, the introduction of methyl substituents in the diene substrates influences these relative energies appreciably. Good agreement with the experimentally observed stereochemistry is only found when using the real catalyst II and the largest model substrates in the DFT calculations.  相似文献   

5.
A new type of molybdenum alkylidyne catalysts for alkyne metathesis is described, which is distinguished by an unconventional podand topology. These structurally well‐defined complexes are easy to make on scale and proved to be tolerant toward numerous functional groups; even certain protic substituents were found to be compatible. The new catalysts were characterized by X‐ray crystallography and by spectroscopic means, including 95Mo NMR.  相似文献   

6.
Terminal acetylenes are amongst the most problematic substrates for alkyne metathesis because they tend to undergo rapid polymerization on contact with a metal alkylidyne. The molybdenum complex 3 endowed with triphenylsilanolate ligands, however, is capable of inducing surprisingly effective cross‐metathesis reactions of terminal alkyl acetylenes with propynyl(trimethyl)silane to give products of type R1?C?CSiMe . This unconventional way of introducing a silyl substituent onto an alkyne terminus complements the conventional tactics of deprotonation/silylation and excels as an orthogonal way of alkyne protecting group chemistry for substrates bearing base‐sensitive functionalities. Moreover, it is shown that even terminal aryl acetylenes can be cross‐metathesized with internal alkyne partners. These unprecedented transformations are compatible with various functional groups. The need to suppress acetylene formation, which seems to be a particularly effective catalyst poison, is also discussed.  相似文献   

7.
Grela K  Ignatowska J 《Organic letters》2002,4(21):3747-3749
[reaction: see text] An improved "instant" catalyst for ring-closing alkyne metathesis reaction is described. Catalyst formed in situ from molybdenum hexacarbonyl and 2-fluorophenol can be used without exclusion of air and moisture and shows high activity in metathesis of functionalized diynes. This system allows cyclization of substrates which were incompatible with previously known Mo(CO)(6)/phenol catalysts.  相似文献   

8.
An expeditious route to the potential immunosuppressive lead compound ivorenolide B ( 1 ) is described, which relies on the formation of the distinctive 1,3‐diyne subunit embedded into the 17‐membered framework of this target by ring‐closing alkyne metathesis (RCAM). This key transformation was accomplished with the aid of the molybdenum alkylidyne complex 7 , which turned out to be compatible with the acid sensitive propargylic alcohol substituents as well as the terminal alkyne unit present in the cyclization precursor. As the presence of such functionality had been detrimental for alkyne metathesis until very recently, this example illustrates the excellent application profile of this new catalyst as well as the rapidly increasing scope of the transformation. Its structural outreach can be further increased by subjecting cyclo‐1,3‐diynes to appropriate post‐metathetic transformations, most notably with the help of alkynophilic gold or palladium catalysts. This aspect is illustrated by the conversion of the model compound 4 into various cyclophane products.  相似文献   

9.
A conceptually novel metallonitrene/alkyne metathesis cascade reaction has been developed for the construction of nitrogen-containing compounds from simple alkyne starting materials. Rhodium(II) tetracarboxylate salts are efficient catalysts for this reaction, in which an electrophilic rhodium nitrene is trapped by an alkyne, resulting in the formation of a new C-N bond and the generation of a reactive metallocarbene for cascade reaction. The reaction is tolerant of both alkyl and aryl substituents on the alkyne, and proceeds at room temperature in a variety of common solvents. The modular nature of the reaction allows for the rapid construction of congested bicyclic systems from remarkably simple alkyne starting materials.  相似文献   

10.
A systematic study on ring‐closing metathesis with Grubbs II catalyst to cembranoid macrocycles is described. Acyclic terpenoids with a functional group X in the homoallylic position relative to an RCM active terminus and substituents R, R1 directly attached to the other terminal double bond were prepared from geraniol derived trienes and fragments that are based on bromoalkenes and dimethyl malonate. Such terpenoids were suitable precursors, despite the presence of competing double bonds in their framework. The size of R and R1 is crucial for successful macrocyclization. Whereas small alkyl substituents at the double bond directed the RCM towards six‐membered ring formation, cross metathesis leading to dimers dominated for bulkier alkyl groups. A similar result was obtained for precursors without functional group X. In the case of unsymmetrically substituted terpenoid precursor (R=Et, R1=Me) with homoallylic OTBS or OMe group, the RCM could be controlled towards formation of macrocyclic cembranoids, which were isolated with excellent E‐selectivity. The role of the substituents was further studied by quantum chemical calculations of simplified model substrates. Based on these results a mechanistic rationale is proposed.  相似文献   

11.
Mechanistic studies on the direct formation of arylene ethynylene macrocycles via alkyne metathesis catalyzed by a molybdenum complex are reported. Gel permeation chromatography (GPC) and matrix-assisted laser desorption ionization (MALDI) mass spectrometry on the products from metathesis of monomer 1 show the initial formation of linear oligomers and large macrocycles (n > 6), followed by their transformation into the thermodynamically most stable product distribution-mainly the cyclic hexamer. Variable temperature and scrambling experiments reveal the reversibility of macrocycle formation. Nearly identical product distributions are observed from the cross metathesis of hexacycle 2 with diphenylacetylene and from the metathesis of bis(phenylethynyl) substituted monomer 4, demonstrating that macrocycle formation is thermodynamically rather than kinetically controlled. The metathesis byproduct, 3-hexyne, is shown to inhibit the catalyst. It is suggested that the relative metathesis rates of dialkylalkynes versus diarylalkynes trap the catalyst in a nonproductive manifold, rendering it unavailable for the productive metathesis of aryl alkylalkyne substrates. This finding indicates that dialkyl-substituted alkyne byproducts should be avoided (or efficiently removed) if the metatheses of aryl substrates, especially those with electron-withdrawing groups, are to proceed to high conversion.  相似文献   

12.
Here we describe the metathesis reactions of a strained eight-membered ring that contains both alkene and alkyne functionality. We find that the alkyne metathesis catalyst produces polymer through a ring-opening alkyne metathesis reaction that is driven by the strain release from the monomer. The strained monomer provides unusual reactivity with ruthenium-based alkene metathesis catalysts. We isolate a discrete trimeric species a Dewar benzene derivative that is locked in this form through an unsaturated cyclophane strap.  相似文献   

13.
    
Success of ring closure reactions of substrates having two terminal alkenes through olefin metathesis depends on a number of factors such as catalysts, nature and size of the rings to be formed and the substituents/functional groups present on the alkenes as well as at the allylic position. This article presents an overview of these influencing factors with illustrative examples.  相似文献   

14.
Norbornene derivatives 4 and 5 containing sidechains bearing an internal alkyne and either a terminal alkene or a terminal alkyne were found to undergo a cascade of metathesis reactions when treated with ruthenium based metathesis catalysts to form highly functionalised pentacyclic products. The reactions illustrate an interesting difference in reactivity between Grubbs’ catalyst and the second generation catalyst, with the former being more reactive for the early steps of the cascade.  相似文献   

15.
Donatella Banti 《Tetrahedron》2004,60(37):8043-8052
Norbornene derivatives bearing endo-substituents in the 5- and 6-positions were studied as substrates for ene-yne metathesis cascades. Substrates which contained an internal alkyne and a terminal alkene or alkyne in each sidechain were found to undergo a metathesis cascade leading to pentacyclic bis-dienes and bis-trienes. Attempts to extend the chemistry further to sidechains containing two internal alkynes or two internal alkynes and a terminal alkene were not successful with the first generation Grubbs' catalyst. However, the substrate containing two internal alkynes did react with the second generation Grubbs' catalyst to give a tetra-diene containing product.  相似文献   

16.
A new generation of alkyne metathesis catalysts, which are distinguished by high activity and an exquisite functional group tolerance, allows the scope of this transformation to be extended beyond its traditional range. They accept substrates that were previously found problematic or unreactive, such as propargyl alcohol derivatives, electron‐deficient and electron‐rich acetylenes of various types, and even terminal alkynes. Moreover, post‐metathetic transformations other than semi‐reduction increase the structural portfolio, as witnessed by the synthesis of a annulated phenol derivative via ring‐closing alkyne metathesis (RCAM) followed by a transannular gold‐catalyzed Conia‐ene reaction. Further examples encompass a post‐metathetic transannular ketone–alkyne cyclization with formation of a trisubstituted furan, a ruthenium‐catalyzed redox isomerization, and a Meyer–Schuster rearrangement/oxa‐Michael cascade. These reaction modes fueled model studies toward salicylate macrolides, furanocembranolides, and the cytotoxic macrolides acutiphycin and enigmazole A; moreover, they served as the key design elements of concise total syntheses of dehydrocurvularin ( 27 ) and the antibiotic agent A26771B ( 36 ).  相似文献   

17.
Mechanism and activity of ruthenium olefin metathesis catalysts.   总被引:2,自引:0,他引:2  
This report details the effects of ligand variation on the mechanism and activity of ruthenium-based olefin metathesis catalysts. A series of ruthenium complexes of the general formula L(PR(3))(X)(2)Ru=CHR(1) have been prepared, and the influence of the substituents L, X, R, and R(1) on the rates of phosphine dissociation and initiation as well as overall activity for olefin metathesis reactions was examined. In all cases, initiation proceeds by dissociative substitution of a phosphine ligand (PR(3)) with an olefinic substrate. All of the ligands L, X, R, and R(1) have a significant impact on initiation rates and on catalyst activity. The origins of the observed substituent effects as well as the implications of these studies for the design and implementation of new olefin metathesis catalysts and substrates are discussed in detail.  相似文献   

18.
The design, synthesis, stability, and catalytic activity of nitro-substituted Hoveyda-Grubbs metathesis catalysts are described. The highly active and stable meta- and para-substituted complexes are attractive from a practical point of view. These catalysts operate in very mild conditions and can be successfully applied in various types of metathesis [ring-closing metathesis, cross-metathesis (CM), and enyne metathesis]. Although the presence of a NO(2) group leads to catalysts that are dramatically more active than both the second-generation Grubbs's catalyst and the phosphine-free Hoveyda's carbene, enhancement of reactivity is somewhat lower than that observed for a sterically activated Hoveyda-Grubbs catalyst. Attempts to combine two modes of activation, steric and electronic, result in severely decreasing a catalyst's stability. The present findings illustrate that different Ru catalysts turned out to be optimal for different applications. Whereas phosphine-free carbenes are catalysts of choice for CM of various electron-deficient substrates, they exhibit lower reactivity in the formation of tetrasubstituted double bonds. This demonstrates that no single catalyst outperforms all others in all possible applications.  相似文献   

19.
The data reported in this paper demonstrate that great care must be taken when choosing an appropriate catalyst for a given metathesis reaction. First-generation catalysts were found to be useful in the metathesis of sterically unhindered substrates. Second-generation catalysts (under optimised conditions) showed good to excellent activities toward sterically hindered and electron-withdrawing group (EWG)-substituted alkenes that do not react using the first-generation complexes. A strong temperature effect was noted on all of the reactions tested. Interestingly, attempts to force a reaction by increasing the catalyst loading were much less effective. Therefore, when possible, it is suggested that metathesis transformations should be carried out with a second-generation catalyst at 70 degrees C in toluene. However, different second-generation catalysts proved to be optimal for different applications and no single catalyst outperformed all others in all cases. Nevertheless, some empirical rules can be deduced from the model experiments, providing preliminary hints for the selection of the optimal catalysts.  相似文献   

20.
A series of sulfur chelated dormant ruthenium olefin metathesis catalysts is presented. The catalysts prepared were shown to possess the uncommon cis-dichloro arrangement and were mostly inactive at room temperature. By systematically modifying the size of the substituent groups at the chelating sulfur atom, catalyst activity at different temperatures was significantly affected; more bulky substituents fomented activity at lower temperatures. The catalysts were also shown to be stable in solution and retained their catalytic activity even after being exposed to air for two weeks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号