首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, we construct and study an exactly well‐balanced positivity‐preserving nonstaggered central scheme for shallow water flows in open channels with irregular geometry and nonflat bottom topography. We introduce a novel discretization of the source term based on hydrostatic reconstruction to obtain the exactly well‐balanced property for the still water steady‐state solution even in the presence of wetting and drying transitions. The positivity‐preserving property of the cross‐sectional wet area is obtained by using a modified “draining" time‐step technique. The current scheme is also Riemann‐solver‐free. Several classical problems of open‐channel flows are used to test these properties. Numerical results confirm that the current scheme is robust, exactly well‐balanced and positivity‐preserving.  相似文献   

2.
Numerical solutions of the shallow water equations can be used to reproduce flow hydrodynamics occurring in a wide range of regions. In hydraulic engineering, the objectives include the prediction of dam break wave propagation, fluvial floods and other catastrophic flooding phenomena, the modeling of estuarine and coastal circulations, and the design and optimization of hydraulic structures. In this paper, a well‐balanced explicit and semi‐implicit finite element scheme for shallow water equations over complex domains involving wetting and drying is proposed. The governing equations are discretized by a fractional finite element method using a two‐step Taylor–Galerkin scheme. First, the intermediate increment of conserved variable is obtained explicitly neglecting the pressure gradient term. This is then corrected for the effects of pressure once the pressure increment has been obtained from the Poisson equation. In order to maintain the ‘well‐balanced’ property, the pressure gradient term and bed slope terms are incorporated into the Poisson equation. Moreover, a local bed slope modification technique is employed in drying–wetting interface treatments. The proposed model is well validated against several theoretical benchmark tests. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
A robust Godunov‐type numerical scheme solver is proposed for solving 2D SWEs and is applied to simulate flow over complex topography with wetting and drying. In reality, the topography is usually complex and irregular; therefore, to avoid the numerical errors generated by such features, a Homogenous Flux Method is used to handle the bed slope term in the SWEs. The method treats the bed slope term as a flux to be incorporated into the flux gradient and so maintains the balance between the two in a Godunov‐type shock‐capturing scheme. The main advantages of the method are: first, it is simple and easy to implement; second, numerical experiments demonstrate that it can handle discontinuous or vertical bed topography without any special treatment and third, it is applicable to both steady and unsteady flows. It is demonstrated how the approach set out here can be applied to the nonlinear hyperbolic system of the SWEs. The two‐dimensional hyperbolic system is then solved by use of a second‐order total‐variation‐diminishing version of the weighted average flux method in conjunction with a Harten‐Lax‐van Leer‐Contract approximate Riemann solver incorporating the new flux gradient term. Several benchmark tests are presented to validate the model and the approach is verified against experimental measurements from the European Union Concerted Action on Dam Break Modelling project. These show very good agreement. Finally, the method is applied to a volcano‐induced outburst flood over an initially dry channel with complex irregular topography to demonstrate the technique's capability in simulating a real flood. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
A robust, well‐balanced, unstructured, Godunov‐type finite volume model has been developed in order to simulate two‐dimensional dam‐break floods over complex topography with wetting and drying. The model is based on the nonlinear shallow water equations in hyperbolic conservation form. The inviscid fluxes are calculated using the HLLC approximate Riemann solver and a second‐order spatial accuracy is achieved by implementing the MUSCL reconstruction technique. To prevent numerical oscillations near shocks, slope‐limiting techniques are used for controlling the total variation of the reconstructed field. The model utilizes an explicit two‐stage Runge–Kutta method for time stepping, whereas implicit treatments for friction source terms. The novelties of the model include the flux correction terms and the water depth reconstruction method both for partially and fully submerged cells, and the wet/dry front treatments. The proposed flux correction terms combined with the water depth reconstruction method are necessary to balance the bed slope terms and flux gradient in the hydrostatical steady flow condition. Especially, this well‐balanced property is also preserved in partially submerged cells. It is found that the developed wet/dry front treatments and implicit scheme for friction source terms are stable. The model is tested against benchmark problems, laboratory experimental data, and realistic application related to dam‐break flood wave propagation over arbitrary topography. Numerical results show that the model performs satisfactorily with respect to its effectiveness and robustness and thus has bright application prospects. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
A wetting–drying condition (WDC) for unsteady shallow water flow in two dimensions leading to zero numerical error in mass conservation is presented in this work. Some applications are shown which demonstrate the effectiveness of the WDC in flood propagation and dam break flows over real geometries. The WDC has been incorporated into a cell centred finite volume method based on Roe's approximate Riemann solver across the edges of both structured and unstructured meshes. Previous wetting–drying condition based on steady‐state conditions lead to numerical errors in unsteady cases over configurations with strong variations on bed slope. A modification of the wetting–drying condition including the normal velocity to the cell edge enables to achieve zero numerical errors. The complete numerical technique is described in this work including source terms discretization as a complete and efficient 2D river flow simulation tool. Comparisons of experimental and numerical results are shown for some of the applications. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
In the following lines, we propose a numerical scheme for the shallow‐water system supplemented by topography and friction source terms, in a 2D unstructured context. This work proposes an improved version of the well‐balanced and robust numerical model recently introduced by Duran et al. (J. Comp. Phys., 235 , 565–586, 2013) for the pre‐balanced shallow‐water equations, accounting for varying topography. The present work aims at relaxing the robustness condition and includes a friction term. To this purpose, the scheme is modified using a recent method, entirely based on a modified Riemann solver. This approach preserves the robustness and well‐balanced properties of the original scheme and prevents unstable computations in the presence of low water depths. A series of numerical experiments are devoted to highlighting the performances of the resulting scheme. Simulations involving dry areas, complex geometry and topography are proposed to validate the stability of the numerical model in the neighbourhood of wet/dry transitions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
On unstructured meshes, the cell‐centered finite volume (CCFV) formulation, where the finite control volumes are the mesh elements themselves, is probably the most used formulation for numerically solving the two‐dimensional nonlinear shallow water equations and hyperbolic conservation laws in general. Within this CCFV framework, second‐order spatial accuracy is achieved with a Monotone Upstream‐centered Schemes for Conservation Laws‐type (MUSCL) linear reconstruction technique, where a novel edge‐based multidimensional limiting procedure is derived for the control of the total variation of the reconstructed field. To this end, a relatively simple, but very effective modification to a reconstruction procedure for CCFV schemes, is introduced, which takes into account geometrical characteristics of computational triangular meshes. The proposed strategy is shown not to suffer from loss of accuracy on grids with poor connectivity. We apply this reconstruction in the development of a second‐order well‐balanced Godunov‐type scheme for the simulation of unsteady two‐dimensional flows over arbitrary topography with wetting and drying on triangular meshes. Although the proposed limited reconstruction is independent from the Riemann solver used, the well‐known approximate Riemann solver of Roe is utilized to compute the numerical fluxes, whereas the Green–Gauss divergence formulation for gradient computations is implemented. Two different stencils for the Green–Gauss gradient computations are implemented and critically tested, in conjunction with the proposed limiting strategy, on various grid types, for smooth and nonsmooth flow conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, a new family of high‐order relaxation methods is constructed. These methods combine general higher‐order reconstruction for spatial discretization and higher order implicit‐explicit schemes or TVD Runge–Kutta schemes for time integration of relaxing systems. The new methods retain all the attractive features of classical relaxation schemes such as neither Riemann solvers nor characteristic decomposition are needed. Numerical experiments with the shallow‐water equations in both one and two space dimensions on flat and non‐flat topography demonstrate the high resolution and the ability of our relaxation schemes to better resolve the solution in the presence of shocks and dry areas without using either Riemann solvers or front tracking techniques. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
A1‐D numerical model is presented for vertically homogeneous shallow flows with variable horizontal density. The governing equations represent depth‐averaged mass and momentum conservation of a liquid–species mixture, and mass conservation of the species in the horizontal direction. Here, the term ‘species’ refers to material transported with the liquid flow. For example, when the species is taken to be suspended sediment, the model provides an idealized simulation of hyper‐concentrated sediment‐laden flows. The volumetric species concentration acts as an active scalar, allowing the species dynamics to modify the flow structure. A Godunov‐type finite volume scheme is implemented to solve the conservation laws written in a deviatoric, hyperbolic form. The model is verified for variable‐density flows, where analytical steady‐state solutions are derived. The agreement between the numerical predictions and benchmark test solutions illustrates the ability of the model to capture rapidly varying flow features over uniform and non‐uniform bed topography. A parameter study examines the effects of varying the initial density and depth in different regions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
We present a new finite‐volume method for calculating complex flows on non‐uniform meshes. This method is designed to be highly compact and to accurately capture all discontinuities that may arise within the solution of a nonlinear hyperbolic system. In the first step, we devise a fourth‐degree Hermite polynomial to interpolate the solution. The coefficients defining this polynomial are calculated by using a least‐square method. To introduce monotonicity conditions within the procedure, two constraints are added into the least‐square system. Those constraints are derived by locally matching the high‐order Hermite polynomial with a low‐order TVD polynomial. To emulate these constraints only in regions of discontinuities, data‐depending weights are defined; these weights are based upon normalized indicators of smoothness of the solution and are parameterized by an O(1) quantity. The reconstruction so generated is highly compact and is fifth‐order accurate when the solution is smooth; this reconstruction becomes first order in regions of discontinuities. In the second step, this reconstruction is inserted in an HLL approximate Riemann solver. This solver is designed to correctly capture all discontinuities that may arise into the solution. To this aim, we introduce the contribution of a possible contact discontinuity into the HLL Riemann solver. Thus, a spatially fifth‐order non‐oscillatory method is generated. This method evolves in time the solution and its first derivative. In a one‐dimensional context, a linear spectral analysis and extensive numerical experiments make it possible to assess the robustness and the advantages of the method in computing multi‐scale problems with embedded discontinuities. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
A numerical method is described that may be used to determine the propagation characteristics of weakly non‐hydrostatic non‐linear free surface waves over a general, bottom topography. In shallow water of constant undisturbed depth, such waves are equivalent to the familiar cnoidal waves characterized by sharp crests and relatively flat troughs. For a certain range of parameters, these propagate without change of form by virtue of the weakly non‐hydrostatic balance in the vertical momentum equation. Effectively, this counters the tendency for the non‐linearity in a purely hydrostatic theory to lead to a continuously deforming surface wave profile. The realistic representation furnished by cnoidal wave theory of free surface waves in the shallow near‐shore zone has led to its utilization in evaluating their propagation characteristics. Nonetheless, the classic analytical theory is inapplicable to the case of wave propagation over a sloping beach or off‐shore sand bar topography. Under these conditions, a local change in form of the surface wave profile is anticipated before the waves break and knowing this is required in order to evaluate fully the propagation process. The efficacy of the numerical method is first demonstrated by comparing the solution for water of constant depth with the evaluation of the analytical solution expressed in terms of the Jacobian elliptic function cn. The general method described in the paper is then illustrated by experiments to determine the change in profile of weakly non‐hydrostatic non‐linear surface waves propagating over bed forms representative of those found in shallow coastal seas. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
Many environmental applications of shallow water flow modelling can be characterized as only slowly varying and everywhere sub‐critical. A simplified finite volume model is therefore developed that is capable of describing pertinent shallow water flow processes more efficiently than the usual Godunov/ Riemann characteristics approaches. The model is tested against a number of analytical and numerical solutions to the governing equations. The model reproduces accurately flow round a circular bend, flow over topography, flow up an initially dry beach and floodwave propagation down a meandering river reach, with mass conservative solutions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
The simulation of advancing flood waves over rugged topography, by solving the shallow‐water equations with well‐balanced high‐resolution finite volume methods and block‐structured dynamic adaptive mesh refinement (AMR), is described and validated in this paper. The efficiency of block‐structured AMR makes large‐scale problems tractable, and allows the use of accurate and stable methods developed for solving general hyperbolic problems on quadrilateral grids. Features indicative of flooding in rugged terrain, such as advancing wet–dry fronts and non‐stationary steady states due to balanced source terms from variable topography, present unique challenges and require modifications such as special Riemann solvers. A well‐balanced Riemann solver for inundation and general (non‐stationary) flow over topography is tested in this context. The difficulties of modeling floods in rugged terrain, and the rationale for and efficacy of using AMR and well‐balanced methods, are presented. The algorithms are validated by simulating the Malpasset dam‐break flood (France, 1959), which has served as a benchmark problem previously. Historical field data, laboratory model data and other numerical simulation results (computed on static fitted meshes) are shown for comparison. The methods are implemented in GEO CLAW , a subset of the open‐source CLAWPACK software. All the software is freely available at www.clawpack.org . Published in 2010 by John Wiley & Sons, Ltd.  相似文献   

14.
Proper approximation of the force terms, especially the bed slope term, is of crucial importance to simulating shallow water flows in lattice Boltzmann (LB) models. However, there is little discussion on the schemes of adding force terms to LB models for shallow water equations (SWEs). In this study, we evaluate the performance of forcing schemes coupled with different LB models (LABSWE and MLBSWE) in simulating shallow water flows over complex topography and try to find out their intrinsic characteristics and applicability. Three cases are adopted for evaluation, including a stationary case, a one-dimensional tidal wave flow over an irregular bed, and a steady flow over a two-dimensional seamount. The simulating results are compared with analytical solutions or the results produced by the finite difference method. For LABSWE, all the forcing schemes, except for the weighting factor method, fail to produce accurate solutions for the test cases; this is probably due to the mismatch between the bed slope term in source terms and the quadratic depth term of the equilibrium distribution functions in these forcing schemes. For MLBSWE, all the forcing schemes are capable of simulating flows over the complex topography accurately; furthermore, those schemes taking into account the collision effect τ to eliminate the momentum induced by forces provide more accurate solutions with quicker convergence as the lattice size decreases. In this view, MLBSWE can bring more flexibility in treating the force terms and thus can be a better tool to simulate shallow water flows over complex topography in practical application.  相似文献   

15.
A numerical model has been developed for simulating density‐stratified flow in domains with irregular but simple topography. The model was designed for simulating strong interactions between internal gravity waves and topography, e.g. exchange flows in contracting channels, tidally or convectively driven flow over two‐dimensional sills or waves propagating onto a shoaling bed. The model is based on the non‐hydrostatic, Boussinesq equations of motion for a continuously stratified fluid in a rotating frame, subject to user‐configurable boundary conditions. An orthogonal boundary fitting co‐ordinate system is used for the numerical computations, which rely on a fourth‐order compact differentiation scheme, a third‐order explicit time stepping and a multi‐grid based pressure projection algorithm. The numerical techniques are described and a suite of validation studies are presented. The validation studies include a pointwise comparison of numerical simulations with both analytical solutions and laboratory measurements of non‐linear solitary wave propagation. Simulation results for flows lacking analytical or laboratory data are analysed a posteriori to demonstrate satisfaction of the potential energy balance. Computational results are compared with two‐layer hydraulic predictions in the case of exchange flow through a contracting channel. Finally, a simulation of circulation driven by spatially non‐uniform surface buoyancy flux in an irregular basin is discussed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
An efficient numerical scheme is outlined for solving the SWEs (shallow water equations) in environmental flow; this scheme includes the addition of a five‐point symmetric total variation diminishing (TVD) term to the corrector step of the standard MacCormack scheme. The paper shows that the discretization of the conservative and non‐conservative forms of the SWEs leads to the same finite difference scheme when the source term is discretized in a certain way. The non‐conservative form is used in the solution outlined herein, since this formulation is simpler and more efficient. The time step is determined adaptively, based on the maximum instantaneous Courant number across the domain. The bed friction is included either explicitly or implicitly in the computational algorithm according to the local water depth. The wetting and drying process is simulated in a manner which complements the use of operator‐splitting and two‐stage numerical schemes. The numerical model was then applied to a hypothetical dam‐break scenario, an experimental dam‐break case and an extreme flooding event over the Toce River valley physical model. The predicted results are free of spurious oscillations for both sub‐ and super‐critical flows, and the predictions compare favourably with the experimental measurements. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
A simple scheme is developed for treatment of vertical bed topography in shallow water flows. The effect of the vertical step on flows is modelled with the shallow water equations including local energy loss terms. The bed elevation is denoted with zb for the left and zb+ for the right values at each grid point, hence exactly representing a discontinuity in the bed topography. The surface gradient method (SGM) is generalized to reconstruct water depths at cell interfaces involving a vertical step so that the fluxes at the cell interfaces can accurately be calculated with a Riemann solver. The scheme is verified by predicting a surge crossing a step, a tidal flow over a step and dam‐break flows on wet/dry beds. The results have shown good agreements compared with analytical solutions and available experimental data. The scheme is efficient, robust, and may be used for practical flow calculations. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
This paper describes a numerical solver of well‐balanced, 2D depth‐averaged shallow water‐sediment equations. The equations permit variable horizontal fluid density and are designed to model water‐sediment flow over a mobile bed. A Godunov‐type, Harten–Lax–van Leer contact (HLLC) finite volume scheme is used to solve the fully coupled system of hyperbolic conservation laws that describe flow hydrodynamics, suspended sediment transport, bedload transport and bed morphological change. Dependent variables are specially selected to handle the presence of the variable density property in the mathematical formulation. The model is verified against analytical and semi‐analytical solutions for bedload transport and suspended sediment transport, respectively. The well‐balanced property of the equations is verified for a variable‐density dam break flow over discontinuous bathymetry. Simulations of an idealised dam‐break flow over an erodible bed are in excellent agreement with previously published results, validating the ability of the model to capture the complex interaction between rapidly varying flow and an erodible bed and validating the eigenstructure of the system of variable‐density governing equations. Flow hydrodynamics and final bed topography of a laboratory‐based 2D partial dam breach over a mobile bed are satisfactorily reproduced by the numerical model. Comparison of the final bed topographies, computed for two distinct sediment transport methods, highlights the sensitivity of shallow water‐sediment models to the choice of closure relationships. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
A modified lattice Boltzmann model is proposed to describe shallow water flows over complex topography. In the proposed model, the quadratic depth term is excluded from the equilibrium distribution functions (EDFs), and the hydrostatic pressure term is combined with the bed slope term to be treated as a part of the sourcing term in the lattice Boltzmann equation (LBE). Therefore, it is unnecessary to match the coefficients of the quadratic depth term in the EDFs with those of the bed slope term in the sourcing terms in the LBE. This would bring more flexibility to the treatment of the sourcing terms in the LBE. In order to recover the shallow water equations (SWEs), the basic constraints are redefined, and under these constraints, the coefficients of the EDFs are derived afterwards. Several benchmark problems are used to validate the proposed model, including stationary case, steady flows over a two‐dimensional bump and tidal wave flows over irregular bed elevation. The computed results are in excellent agreement with the results of the other numerical methods and the analytical solutions, indicating that the proposed model is capable of simulating shallow water flows over complex bathymetry. It also proves that the proposed model has potential to produce competitive solutions to shallow water flows over complex bed topography. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, we present a class of high‐order accurate cell‐centered arbitrary Lagrangian–Eulerian (ALE) one‐step ADER weighted essentially non‐oscillatory (WENO) finite volume schemes for the solution of nonlinear hyperbolic conservation laws on two‐dimensional unstructured triangular meshes. High order of accuracy in space is achieved by a WENO reconstruction algorithm, while a local space–time Galerkin predictor allows the schemes to be high order accurate also in time by using an element‐local weak formulation of the governing PDE on moving meshes. The mesh motion can be computed by choosing among three different node solvers, which are for the first time compared with each other in this article: the node velocity may be obtained either (i) as an arithmetic average among the states surrounding the node, as suggested by Cheng and Shu, or (ii) as a solution of multiple one‐dimensional half‐Riemann problems around a vertex, as suggested by Maire, or (iii) by solving approximately a multidimensional Riemann problem around each vertex of the mesh using the genuinely multidimensional Harten–Lax–van Leer Riemann solver recently proposed by Balsara et al. Once the vertex velocity and thus the new node location have been determined by the node solver, the local mesh motion is then constructed by straight edges connecting the vertex positions at the old time level tn with the new ones at the next time level tn + 1. If necessary, a rezoning step can be introduced here to overcome mesh tangling or highly deformed elements. The final ALE finite volume scheme is based directly on a space–time conservation formulation of the governing PDE system, which therefore makes an additional remapping stage unnecessary, as the ALE fluxes already properly take into account the rezoned geometry. In this sense, our scheme falls into the category of direct ALE methods. Furthermore, the geometric conservation law is satisfied by the scheme by construction. We apply the high‐order algorithm presented in this paper to the Euler equations of compressible gas dynamics as well as to the ideal classical and relativistic magnetohydrodynamic equations. We show numerical convergence results up to fifth order of accuracy in space and time together with some classical numerical test problems for each hyperbolic system under consideration. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号