首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The identification and control of a critical stage of polyaniline “nanotube” self‐assembly is presented, namely the granular agglomeration or growth onto nanorod templates. When the synthesis pH is held above 2.5, smooth insulating nanorods exhibiting hydrogen bonding and containing phenazine structures are produced, while below pH 2.5, small 15–30 nm granular polyaniline nanoparticles appear to agglomerate onto the available nanorod surface, apparently improving conductivity of the resulting structures by three orders of magnitude. This finding affects both fundamental theories of polyaniline nanostructure self‐assembly and their practical applications.

  相似文献   


2.
The efficient nucleophilic addition of aryl Grignard reagents (aryl=4‐MeOC6H4, 4‐Me2NC6H4, Ph, 4‐CF3C6H4, and thienyl) to C60 in the presence of DMSO produced 1,2‐arylhydro[60]fullerenes after acid treatment. The reactions of the anions of these arylhydro[60]fullerenes with either dimethylphenylsilylmethyl iodide or dimethyl(2‐isopropoxyphenyl)silylmethyl iodide yielded the target compounds, 1‐aryl‐4‐silylmethyl[60]fullerenes. The properties and structures of these 1‐aryl‐4‐silylmethyl[60]fullerenes (aryl=4‐MeOC6H4, thienyl) were examined by electrochemical studies, X‐ray crystallography, flash‐photolysis time‐resolved microwave‐conductivity (FP‐TRMC) measurements, and electron‐mobility measurements by using a space‐charge‐limited current (SCLC) model. Organic photovoltaic devices with a polymer‐based bulk heterojunction structure and small‐molecule‐based p–n and pin heterojunction configurations were fabricated by using 1‐aryl‐4‐silylmethyl[60]fullerenes as an electron acceptor. The most efficient device exhibited a power‐conversion efficiency of 3.4 % (short‐circuit current density: 8.1 mA/ cm2, open‐circuit voltage: 0.69 V, fill factor: 0.59).  相似文献   

3.
Urchin‐like PANI microspheres with an average diameter of 5–10 µm have been successfully prepared. Their surfaces consist of highly oriented nanofibers of ≈30 nm diameter and 1 µm length. The solvent composition plays an important role in the formation process of urchin‐like PANI microspheres. The structure of the products has been characterized by FT‐IR, UV‐vis, and XRD. To investigate the self‐assembly of urchin‐like PANI microspheres, the effect of polymerization time on the morphology of the products has been studied. The morphological evolution process indicates that the urchin‐like microspheres originate from the self‐assembly of nanoplates, which then grow into urchin‐like microstructures with nanofibers on the surface.

  相似文献   


4.
The single‐step preparation of highly ordered mesoporous silica hybrid nanocomposites with conjugated polymers was explored using a novel cationic 3,4‐propylenedioxythiophene (ProDOT) surfactant (PrS). The method does not require high‐temperature calcination or a washing procedure. The combination of self‐assembly of the silica surfactant and in situ polymerization of the ProDOT tail is responsible for creation of the mesoporosity with ultralarge pores, large pore volume, and electroactivity. As this novel material exhibits excellent textural parameters together with electrical conductivity, we believe that this could find potential applications in various fields. This novel concept of creating mesoporosity without a calcination process is a significant breakthrough in the field of mesoporous materials and the method can be further generalized as a rational preparation of various mesoporous hybrid materials having different structures and pore diameters.  相似文献   

5.
D‐A copolymer systems have unique characteristics, such as low band gap and ambipolar nature, which are important to design electronic polymer devices. In this contribution, we synthesized and characterized a D‐A random copolymer containing bis‐3‐hexylthiophene‐benzothiadiazole as acceptor unit and 9,9‐dioctylfluorene as donor unit. We show that the polymeric film morphology depends of the Hansen solubility parameters, evaporation rate, and surface tension of the solvent. Chloroform, toluene, and 1,2,4‐trichlorobenzene (TCB) promote the formation of self‐assembled structures due to breath‐figure mechanism. In contrast, THF causes aggregation and phase separation that affect negatively the electrical conductivity of the copolymer film. Among the solvents analyzed, TCB is the one with the highest molecular interaction with the copolymer synthetized in this work. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1035–1044  相似文献   

6.
We present the synthesis and the electrochemical characterization of polymeric electron transport materials, synthesized by polycondensation of substituted triazines and α,ω‐dihaloalkanes. They can be reversibly reduced with the least negative potential at −0.39 V, which is below the reduction potential of oxygen. In addition, the formation of polyelectrolyte multilayers is possible by the electrostatic self‐assembly method. This multilayer formation takes place in a very defined way up to thirty double layers.

An example of one of the polymeric triazine electron transport materials synthesized and a schematic diagram of a self‐assembled multilayer film.  相似文献   


7.
Three new donor–acceptor‐type copolymers ( P1 , P2 , P3 ) consisting of dicyanofluorene as acceptor and various donor moieties were designed and synthesized. Optoelectronic properties were studied in detail by means of UV‐visible absorption and fluorescence spectroscopy, cyclic voltammetry, space‐charge‐limited current (SCLC), flash‐photolysis time‐resolved microwave conductivity (FP‐TRMC), and density functional theory (DFT). All polymers showed strong absorption in the UV‐visible region and the absorption maximum undergoes redshift with an increasing number of thiophene units in the polymer backbone. SCLC analysis showed that the electron mobilities of the polymers in the bulk state were 1 to 2 orders higher than that of the corresponding hole mobilities, which indicated the n‐type nature of the materials. By using FP‐TRMC, the intrapolymer charge‐carrier mobility was assessed and compared with the interpolymer mobility obtained by SCLC. The polymers exhibited good electron‐accepting properties sufficiently high enough to oxidize the excited states of regioregular poly(3‐hexylthiophene) (P3HT (donor)), as evident from the FP‐TRMC analysis. The P3 polymer exhibited the highest FP‐TRMC transients in the pristine form as well as when blended with P3HT. Use of these polymers as n‐type materials in all‐polymer organic solar cells was also explored in combination with P3HT. In accordance with the TRMC results, P3 exhibited superior electron‐transport and photovoltaic properties to the other two polymers, which is explained by the distribution of the energy levels of the polymers by using DFT calculations.  相似文献   

8.
9.
10.
11.
A comparative investigation was undertaken for the electrosynthesis and electrochemical properties of three different electroactive polymers having a conjugated core building block, dibenzo[a,c]phenazine. A series of monomers has been synthesized as regards to thiophene based units; thiophene, 3‐hexyl thiophene, and 3,4‐ethylenedioxythiophene. The effects of different donor substituents on the polymers' electrochemical properties were examined by cyclic voltammetry. Introducing highly electron‐donating (ethylene dioxy) group to the monomer enables solubility while also lowering the oxidation potential. The planarity of the monomer unit enhances π‐stacking and consequently lowering the Eg from 2.4 eV (PHTP) to 1.7 (PTBP). Cyclic voltammetry and spectroelectrochemical measurements revealed that 2,7‐bis(4‐hexylthiophen‐2‐yl)dibenzo[a,c]phenazine (HTP) and 2,7‐bis(2,3‐dihydrothieno[3,4‐b][1,4]dioxin‐5‐yl)dibenzo[a,c]phenazine (TBP) possessed electrochromic behavior. The colorimetry analysis revealed that while PTBP have a color change from red to blue, PHTP has yellow color at neutral state and blue color at oxidized state. Hence the presence of the phenazine derivative as the acceptor unit causes a red shift in the polymers' absorption to have a blue color. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1714–1720, 2010  相似文献   

12.
13.
In this study, soluble, n‐dopable, florescent, electrochromic polypyrrole derivative was synthesized through both chemical and electrochemical polymerization of 2‐[6‐(1H‐pyrrol‐1‐yl)hexyl]‐1H‐benzo[de]isoquinoline‐1,3(2H)‐dione (PyNI). The polymer synthesized through chemical polymerization had PL emission maxima at 471 and 543 nm and exhibited two redox couples at E1/2,p = ?1.48 V and E1/2,p = 1.12 V due to n‐type and p‐type doping, respectively. Electrochromic properties of electrochemically synthesized poly(PyNI) (PPyNI) were investigated via spectroelectrochemistry, kinetic studies, coloration efficiency, and colorimetry measurements. The optical band gap of PPyNI was calculated as 2.99 and 2.37 eV. Spectroelectrochemistry analysis of PPyNI reflected electronic transitions at 330–418 nm and 704 nm due to π–π* transition and charge carrier band formation, respectively. The polymer exhibited a switching time of 1.63 s and an optical contrast of 33.37%. Furthermore, dual‐type, complementary‐colored polymer electrochromic device in ITO/PPyNI/PEDOT/ITO configuration was assembled and characterized. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
Various densely grafted polymers containing poly(aniline‐2‐sulfonic acid‐co‐aniline)s as side chains and polystyrene as the backbone were prepared. A styryl‐substituted aniline macromonomer, 4‐(4‐vinylbenzoxyl)(Ntert‐butoxycarbonyl)phenylamine (4‐VBPA‐tBOC), was first prepared by the reaction of 4‐aminophenol with the amino‐protecting moiety di‐tert‐butoxyldicarbonate, and this was followed by substitution with 4‐vinylbenzyl chloride. 4‐VBPA‐tBOC thus obtained was homopolymerized with azobisisobutyronitrile as an initiator, and this was followed by deprotection with trifluoroacetic acid to generate poly[4‐(4‐vinylbenzoxyl)phenylamine] (PVBPA) with pendent amine moieties. Second, the copolymerization of aniline‐2‐sulfonic acid and aniline was carried out in the presence of PVBPA to generate densely grafted poly(aniline‐2‐sulfonic acid‐co‐aniline). Through the variation of the molar feed ratio of aniline‐2‐sulfonic acid to aniline, various densely grafted copolymers were generated with different aniline‐2‐sulfonic acid/aniline composition ratios along the side chains. The copolymers prepared with molar feed ratios greater than 1/2 were water‐soluble and had conductivities comparable to those of the linear copolymers. Furthermore, these copolymers could self‐dope in water through intermolecular or intramolecular interactions between the sulfonic acid moieties and imine nitrogens, and this generated large aggregates. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1090–1099, 2005  相似文献   

15.
Tuning electronic properties and morphologies : We report a unique design platform of n‐type organic semiconductors based on asymmetrically substituted bisphenazines that enable tuning of both electronic properties and morphologies of 1D nanostructures (see figure) by using small substituents with various sizes and electronic demands.

  相似文献   


16.
Self‐assembly of two‐dimensional (2D) structures from functional molecules is of great scientific importance. Herein, using a typical linear conducting polymer, polyaniline as building blocks, 2D single crystalline microplates are successively produced. The structure of 2D microplates is clearly defined by selected area electron diffraction, X‐ray diffraction, and Raman spectroscopy. Owing to the anisotropic arrangement of linear conjugated PANI molecules, the microplate shows a typical anisotropic electrical transport property.

  相似文献   


17.
A copolymer of 1‐(4‐fluorophenyl)‐2,5‐di(thiophen‐2‐yl)‐1H‐pyrrole (FPTP) with 3,4‐ethylene dioxythiophene (EDOT) was electrochemically synthesized and characterized. While poly(FPTP) (P(FPTP)) has only two colors in its oxidized and neutral states (blue and yellow), its copolymer with EDOT has five different colors (purple, red, light gray, green, and blue). Electrochromic devices based on P(FPTP‐co‐EDOT) and poly(3,4‐ethylenedioxythiophene) (PEDOT) were constructed and characterized. The oxidized state of the device shows blue color whereas it shows purple for the reduced state. At several potentials the device has good transparency with green and gray colors. Maximum contrast (Δ%T) and switching time of the device were measured as 23% and 1.1 s at 555 nm. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4496–4503, 2007  相似文献   

18.
Stimuli‐responsive polymers have received tremendous attention from scientists and engineers for several decades due to the wide applications of these smart materials in biotechnology and nanotechnology. Driven by the complex functions of living systems, multi‐stimuli‐responsive polymer materials have been designed and developed in recent years. Compared with conventional single‐ or dual‐stimuli‐based polymer materials, multi‐stimuli‐responsive polymer materials would be more intriguing since more functions and finer modulations can be achieved through more parameters. This critical review highlights the recent advances in this area and focuses on three types of multi‐stimuli‐responsive polymer materials, namely, multi‐stimuli‐responsive particles (micelles, micro/nanogels, vesicles, and hybrid particles), multi‐stimuli‐responsive films (polymer brushes, layer‐by‐layer polymer films, and porous membranes), and multi‐stimuli‐responsive bulk gels (hydrogels, organogels, and metallogels) from recent publications. Various stimuli, such as light, temperature, pH, reduction/oxidation, enzymes, ions, glucose, ultrasound, magnetic fields, mechanical stress, solvent, voltage, and electrochemistry, have been combined to switch the functions of polymers. The polymer design, preparation, and function of multi‐stimuli‐responsive particles, films, and bulk gels are comprehensively discussed here.  相似文献   

19.
Fluorescent nanoparticles (FNPs) are obtained in water by self‐assembly from a polymeric ionic liquid, fluorescent carboxylate moiety, and a surfactant through two main supramolecular interactions, that is, ionic bonds and hydrophobic/hydrophilic interactions. The hydrophobicity of the surfactant is tunable and a highly hydrophobic surfactant increases the fluorescence intensity and stability of the FNPs. The fluorescence of the FNPs is sensitive to a quenching effect by various ions with high selectivity, and consequently, they may be used as sensors. The self‐assembly approach used to generate the FNPs is considerably simpler than other methods based on more challenging synthetic methods and the flexibility of the approach should allow a wide and diverse range of FNPs to be prepared with specific sensor applications.  相似文献   

20.
4‐{n‐[4‐(4‐Nitrophenylazo)phenyloxy]alkyl}aminobenzene sulfonic acid (Cn‐ABSA, where n = 2, 4, 6, 8, or 10) as a novel dopant for conducting polymers of polyaniline (PANI) was designed and synthesized. The molecular structure of Cn‐ABSA was characterized with 1H NMR, Fourier transform infrared, and secondary‐ion mass spectrometry. Nanostructures (nanotubes or nanorods) of PANI–(Cn‐ABSA) were successfully synthesized with a self‐assembly process in the presence of Cn‐ABSA as the dopant. The morphology (shape and size) and conductivity of the resulting nanostructures strongly depended on the number of alkyl groups (n) and, in particular, the addition of water before polymerization. The formed micelles of aniline/Cn‐ABSA/water were proposed to be templatelike in forming PANI–(Cn‐ABSA) nanostructures on the basis of the emulsion properties measured by dynamic light scattering. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3485–3497, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号