首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
An efficient adjoint sensitivity technique for optimally collecting targeted observations is presented. The targeting technique incorporates dynamical information from the numerical model predictions to identify when, where and what types of observations would provide the greatest improvement to specific model forecasts at a future time. A functional (goal) is defined to measure what is considered important in modelling problems. The adjoint sensitivity technique is used to identify the impact of observations on the predictive accuracy of the functional, then placing the sensors at the locations with high impacts. The adaptive (goal) observation technique developed here has the following features: (i) over existing targeted observation techniques, its novelty lies in that the interpolation error of numerical results is introduced to the functional (goal), which ensures the measurements are a distance apart; (ii) the use of proper orthogonal decomposition (POD) and reduced order modelling for both the forward and backward simulations, thus reducing the computational cost; and (iii) the use of unstructured meshes. The targeted adaptive observation technique is developed here within an unstructured mesh finite element model (Fluidity). In this work, a POD reduced order modelling is used to form the reduced order forward model by projecting the original complex model from a high dimensional space onto a reduced order space. The reduced order adjoint model is then constructed directly from the reduced order forward model. This efficient adaptive observation technique has been validated with two test cases: a model of an ocean gyre and a model of 2D urban street canyon flows. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
An optimizing reduced implicit difference scheme (IDS) based on singular value decomposition (SVD) and proper orthogonal decomposition (POD) for the two‐dimensional unsaturated soil water flow equation is presented. An ensemble of snapshots is compiled from the transient solutions derived from the usual IDS for a two‐dimensional unsaturated flow equation. Then, optimal orthogonal bases are reconstructed by implementing SVD and POD techniques for the ensemble of snapshots. Combining POD with a Galerkin projection approach, a new lower dimensional and highly accurate IDS for the two‐dimensional unsaturated flow equation is obtained. Error estimates between the true solution, the usual IDS solution, and the reduced IDS solution based on POD basis are derived. Finally, it is shown by means of a numerical example using the technology of local refined grids that the computational load is greatly diminished by using the reduced IDS. Also, the error between the POD approximate solution and the usual IDS solution is proved to be consistent with the derived theoretical results. Thus, both feasibility and efficiency of the POD method are validated. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Intrusive reduced order modeling techniques require access to the solver's discretization and solution algorithm, which are not available for most computational fluid dynamics codes. Therefore, a nonintrusive reduction method that identifies the system matrix of linear fluid dynamical problems with a least-squares technique is presented. The methodology is applied to the linear scalar transport convection-diffusion equation for a 2D square cavity problem with a heated lid. The (time-dependent) boundary conditions are enforced in the obtained reduced order model (ROM) with a penalty method. The results are compared and the accuracy of the ROMs is assessed against the full order solutions and it is shown that the ROM can be used for sensitivity analysis by controlling the nonhomogeneous Dirichlet boundary conditions.  相似文献   

4.
In this paper, we propose a new evolve‐then‐filter reduced order model (EF‐ROM). This is a regularized ROM (Reg‐ROM), which aims to add numerical stabilization to proper orthogonal decomposition (POD) ROMs for convection‐dominated flows. We also consider the Leray ROM (L‐ROM). These two Reg‐ROMs use explicit ROM spatial filtering to smooth (regularize) various terms in the ROMs. Two spatial filters are used: a POD projection onto a POD subspace (Proj) and a POD differential filter (DF). The four Reg‐ROM/filter combinations are tested in the numerical simulation of the three‐dimensional flow past a circular cylinder at a Reynolds number Re=1000. Overall, the most accurate Reg‐ROM/filter combination is EF‐ROM‐DF. Furthermore, the spatial filter has a higher impact on the Reg‐ROM than the regularization used. Indeed, the DF generally yields better results than Proj for both the EF‐ROM and L‐ROM. Finally, the CPU times of the four Reg‐ROM/filter combinations are orders of magnitude lower than the CPU time of the DNS. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
A proper orthogonal decomposition (POD) reduced-order finite difference (FD) extrapolating model is established for the channel flow with local expansion denoted by non-stationary Stokes equations. The POD-based reduced-order numerical model to produce the solutions on the time span [T0, T] (T0 ? T) are obtained by extrapolation and iteration from the very short time span [0, T0] information. The guides to choose the number of POD basis and renew POD basis are provided, and an implementation for solving the POD-based reduced-order FD extrapolating model is given. Some numerical experiments are used to show that the POD-based reduced-order FD extrapolating model is feasible and efficient for simulating the channel flow with local expansion.  相似文献   

6.
7.
This paper introduces tensorial calculus techniques in the framework of POD to reduce the computational complexity of the reduced nonlinear terms. The resulting method, named tensorial POD, can be applied to polynomial nonlinearities of any degree p. Such nonlinear terms have an online complexity of , where k is the dimension of POD basis and therefore is independent of full space dimension. However, it is efficient only for quadratic nonlinear terms because for higher nonlinearities, POD model proves to be less time consuming once the POD basis dimension k is increased. Numerical experiments are carried out with a two‐dimensional SWE test problem to compare the performance of tensorial POD, POD, and POD/discrete empirical interpolation method (DEIM). Numerical results show that tensorial POD decreases by 76× the computational cost of the online stage of POD model for configurations using more than 300,000 model variables. The tensorial POD SWE model was only 2 to 8× slower than the POD/DEIM SWE model but the implementation effort is considerably increased. Tensorial calculus was again employed to construct a new algorithm allowing POD/DEIM SWE model to compute its offline stage faster than POD and tensorial POD approaches. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
The proper orthogonal decomposition (POD) is a model reduction technique for the simulation of physical processes governed by partial differential equations (e.g.,fluid flows). It has been successfully used in the reduced-order modeling of complex systems. In this paper, the applications of the POD method are extended, i.e., the POD method is applied to a classical finite difference (FD) scheme for the non-stationary Stokes equation with a real practical applied background. A reduced FD scheme is established with lower dimensions and sufficiently high accuracy, and the error estimates are provided between the reduced and the classical FD solutions. Some numerical examples illustrate that the numerical results are consistent with theoretical conclusions. Moreover, it is shown that the reduced FD scheme based on the POD method is feasible and efficient in solving the FD scheme for the non-stationary Stokes equation.  相似文献   

9.
A novel acceleration technique using a reduced‐order model is presented to speed up convergence of continuous adjoint solvers. The acceleration is achieved by projecting to an improved solution within an iterative process solely using early solution results. This is achieved by forming basis vectors from early iteration adjoint solutions to perform model order reduction of the adjoint equations. The reduced‐order model of the adjoint equations is then substituted into the full‐order discretized governing equations to determine weighting coefficients for each basis vector. With these coefficients, a linear combination of the basis vectors is used to project to an improved solution. The method is applied to 3 inviscid quasi‐1D nozzle flow cases including fully subsonic flow, subsonic inlet to supersonic outlet flow, and transonic flow with a shock. Significant cost reductions are achieved for a single application as well as repeated applications of the convergence acceleration technique.  相似文献   

10.
In this paper a high‐fidelity aerodynamic model is presented for use in parametric studies of weapon aerodynamics. The method employs a reduced‐order model obtained from the proper orthogonal decomposition (POD) of an ensemble of computational fluid dynamics (CFD) solutions with varying parameters. This decomposition produces an optimal linear set of orthogonal basis functions that best describe the ensemble of numerical solutions. These solutions are then projected onto this set of basis functions to provide a finite set of scalar coefficients that represent the solutions. A pseudo‐continuous representation of these projection coefficients is constructed, which allows predictions to be made of parameter combinations not in the original set of observations. The paper explores the performance of a few design‐of‐experiment approaches for the generation of the initial ensemble of computational experiments. Response surface construction methods based on parametric and non‐parametric models for the pseudo‐continuous representation of the projection coefficients are also evaluated. The model has been applied to two‐flow problems related to high‐speed weapon aerodynamics, inviscid flow around a flare‐stabilized hypersonic projectile and supersonic turbulent flow around a fin‐stabilized projectile with drooping nose control. Comparisons of model predictions with high‐fidelity CFD simulations suggest that the POD provides a reliable and robust approach to the construction of reduced‐order models. The practicality of the model is shown to be sensitive to the technique used to generate the ensemble of observations from which the model is constructed, while the accuracy of the approach depends on the pseudo‐continuous representation of the projection coefficients. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, proper orthogonal decomposition (POD) is combined with the Petrov–Galerkin least squares mixed finite element (PLSMFE) method to derive an optimizing reduced PLSMFE formulation for the non‐stationary conduction–convection problems. Error estimates between the optimizing reduced PLSMFE solutions based on POD and classical PLSMFE solutions are presented. The optimizing reduced PLSMFE formulation can circumvent the constraint of Babu?ka–Brezzi condition so that the combination of finite element subspaces can be chosen freely and allow optimal‐order error estimates to be obtained. Numerical simulation examples have shown that the errors between the optimizing reduced PLSMFE solutions and the classical PLSMFE solutions are consistent with theoretical results. Moreover, they have also shown the feasibility and efficiency of the POD method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
We propose an improved framework for dynamic mode decomposition (DMD) of 2‐D flows for problems originating from meteorology when a large time step acts like a filter in obtaining the significant Koopman modes, therefore, the classic DMD method is not effective. This study is motivated by the need to further clarify the connection between Koopman modes and proper orthogonal decomposition (POD) dynamic modes. We apply DMD and POD to derive reduced order models (ROM) of the shallow water equations. Key innovations for the DMD‐based ROM introduced in this paper are the use of the Moore–Penrose pseudoinverse in the DMD computation that produced an accurate result and a novel selection method for the DMD modes and associated amplitudes and Ritz values. A quantitative comparison of the spatial modes computed from the two decompositions is performed, and a rigorous error analysis for the ROM models obtained is presented. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, we present an explicit formulation for reduced‐order models of the stabilized finite element approximation of the incompressible Navier–Stokes equations. The basic idea is to build a reduced‐order model based on a proper orthogonal decomposition and a Galerkin projection and treat all the terms in an explicit way in the time integration scheme, including the pressure. This is possible because the reduced model snapshots do already fulfill the continuity equation. The pressure field is automatically recovered from the reduced‐order basis and solution coefficients. The main advantage of this explicit treatment of the incompressible Navier–Stokes equations is that it allows for the easy use of hyper‐reduced order models, because only the right‐hand side vector needs to be recovered by means of a gappy data reconstruction procedure. A method for choosing the optimal set of sampling points at the discrete level in the gappy procedure is also presented. Numerical examples show the performance of the proposed strategy. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
The proper orthogonal decomposition (POD)‐based model reduction method is more and more successfully used in fluid flows. However, the main drawback of this methodology rests in the robustness of these reduced order models (ROMs) beyond the reference at which POD modes have been derived. Any variation in the flow or shape parameters within the ROM fails to predict the correct dynamics of the flow field. To broaden the spectrum of these models, the POD modes should have the global characteristics of the flow field over which the predictions are required. Mixing of snapshots with varying parameters is one way to improve the global nature of the modes but is computationally demanding because it requires full‐order solutions for a number of parameter values in order to assemble atextitrich enough database on which to perform POD. Instead, we have used sensitivity analysis (SA) to include the flow and shape parameters influence during the basis selection process to develop more robust ROMs for varying viscosity (Reynolds number), changing orientation and shape definition of bodies. This study aims at extending these ideas to inflow conditions to demonstrate the effectiveness of the proposed approach in capturing the effect of varying inflow on the dynamics of the flow over an elliptic cylinder. Numerical experiments show that the newly derived models allow for a more accurate representation of the flows when exploring the parameter space. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper we discuss,an initial-boundary value problem of hyperbolic type with firstderivative with respect to x.The asymptotic solution is constructed and its uniform validityis proved under weader compatibility conditions.Then we develop an exponentially fitteddifference scheme and establish discrete energy inequality.Finally,we prove that thesolution of difference problem uniformly converges to the solution of the original problem.  相似文献   

16.
This paper presents a fast numerical method, based on the indirect shooting method and Proper Orthogonal Decomposition (POD) technique, for solving distributed optimal control of the wave equation. To solve this problem, we consider the first‐order optimality conditions and then by using finite element spatial discretization and shooting strategy, the solution of the optimality conditions is reduced to the solution of a series of initial value problems (IVPs). Generally, these IVPs are high‐order and thus their solution is time‐consuming. To overcome this drawback, we present a POD indirect shooting method, which uses the POD technique to approximate IVPs with smaller ones and faster run times. Moreover, in the presence of the nonlinear term, to reduce the order of the nonlinear calculations, a discrete empirical interpolation method (DEIM) is applied and a POD/DEIM indirect shooting method is developed. We investigate the performance and accuracy of the proposed methods by means of 4 numerical experiments. We show that the presented POD and POD/DEIM indirect shooting methods dramatically reduce the CPU time compared to the full indirect shooting method, whereas there is no significant difference between the accuracy of the reduced and full indirect shooting methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号