首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stepwise introduction of the potential tripod ligands tris(3,5‐dimethyl‐1‐pyrazolyl)borate (Tp*) and tris(1‐cyclohepta‐2,4,6‐trienyl)phosphane into the coordination sphere of rhodium(I) leads mainly to [Tp*Rh{P(C7H7)3}] ( 4 ), in which Tp* is linked to the rhodium through a single pyrazolyl group and a non‐linear B–H–Rh bridge. This is the novel, now firmly established coordination mode κ2(N,B–H). The phosphane ligand is coordinated through one Rh–P and two Rh‐olefin bonds. Important structural features determined for the crystalline state of 4 are retained in solution, as shown by the 1H, 11B, 13C, 31P and 103Rh NMR spectra.  相似文献   

2.
A series of triarylphosphanes ( 1a , 2a , 3a , 4a , 5a , 6a , 7a , 8a , 9a , 10a , 11a ) have been synthesized. An X‐ray crystal structure analysis of (2‐bromophenyl)diphenylphosphane ( 1a ) unambiguously confirmed the constitution of the functionalized phosphane. The hydrosilylation reaction of styrene with triethoxysilane catalyzed with RhCl3/triarylphosphane was studied. In comparison with the classic Wilkinson's catalyst, rhodium complexes with functionalized triarylphosphane ligands are characterized by a very high catalytic effectiveness for the hydrosilylation of alkene. Among these catalysts tested, RhCl3/diphenyl(2‐(trimethylsilyl)phenyl)phosphane ( 8a ) exhibited excellent catalytic properties. Using this silicon‐containing phosphane ligand for the rhodium‐catalyzed hydrosilylation of styrene, both higher conversion of alkene and higher β‐adduct selectivity were obtained than with Wilkinson's catalyst. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
N‐Heterocyclic carbene‐phosphinidene adducts of the type (IDipp)PR [R = Ph ( 5 ), SiMe3 ( 6 ); IDipp = 1,3‐bis(2,6‐diisopropylphenyl)imidazolin‐2‐ylidene] were used as ligands for the preparation of rhodium(I) and iridium(I) complexes. Treatment of (IDipp)PPh ( 5 ) with the dimeric complexes [M(μ‐Cl)(COD)]2 (M = Rh, Ir; COD = 1,5‐cyclcooctadiene) afforded the corresponding metal(I) complexes [M(COD)Cl{(IDipp)PPh}] [M = Rh ( 7 ) or Ir ( 8 )] in moderate to good yields. The reaction of (IDipp)PSiMe3 ( 6 ) with [Ir(μ‐Cl)(COD)]2 did not yield trimethylsilyl chloride elimination product, but furnished the 1:1 complex, [Ir(COD)Cl{(IDipp)PSiMe3}] ( 9 ). Additionally, the rhodium‐COD complex 7 was converted into the corresponding rhodium‐carbonyl complex [Rh(CO)2Cl{(IDipp)PPh}] ( 10 ) by reaction with an excess of carbon monoxide gas. All complexes were fully characterized by NMR spectroscopy, microanalyses, and single‐crystal X‐ray diffraction studies.  相似文献   

4.
Dimeric rhodium complexes of the type [Rh(PP)(μ2‐Cl)]2 (PP=diphosphine) are often used as precatalysts and are generated “in situ” from the corresponding diolefin complexes by exchange of the diene with the desired diphosphine. Herein, we report that the “in situ” procedure also leads to unexpected monomeric pentacoordinated neutral complexes of the type [RhCl(PP)(diolefin)], for the first time herein characterized by NMR spectroscopy and X‐ray crystallography for the ligands 1,4‐bis(diphenylphosphino)propane (DPPP), 1,4‐bis(diphenylphosphino)butane (DPPB), and 2,2′‐bis(diphenylphosphino)‐1,1′‐binaphthyl (BINAP). The pentacoordinated complexes are in equilibrium with the dimeric target compound [Rh(PP)(μ2‐Cl)]2. The equilibrium is influenced by the rhodium‐diolefin precursor, the solvent and the temperature. Based on the results of NMR and UV/Vis spectroscopic analysis (kinetics) it could be shown that the pentacoordinated complex [RhCl(PP)(diolefin)] may arise both from the “in situ”‐generated neutral complex [Rh(PP)(μ2‐Cl)] by reaction with the free diolefin and, more surprisingly, directly from [Rh(diolefin)(μ2‐Cl)]2 and the diphosphine.  相似文献   

5.
Trialkynylphosphines substituted with bulky triarylsilyl groups at the alkyne termini were synthesized. The new phosphines P(C?CSiAr3)3 (Ar=3,5‐tBu2‐4‐MeOC6H2, 3,5‐(Me3Si)2C6H3) are uncrowded near the phosphorus atom but bulky in the distal region. As a result, they contain a large cavity, at the bottom of which the phosphine lone‐pair electrons are located. The compounds are stable to oxidation by air and hydrolysis. DFT calculations suggested that the triethynylphosphines are good π‐acceptor ligands, comparable with P(OAr)3. The trialkynylphosphines reacted with [{RhCl(cod)}2] (P/Rh=1.1:1) to give selectively the monophosphine–rhodium complex [RhCl(cod)P(C?CSiAr3)3]. X‐ray crystal‐structure analysis revealed that the {RhCl(cod)} fragment is fully accommodated by the cavity of the phosphine ligand. Compared to the effect of analogues with smaller end caps and PPh3, the trialkynylphosphines accelerated markedly the rhodium‐catalyzed hydrosilylation of ketones with a triorganosilane. It is proposed that the higher catalytic activity observed with the holey phosphines is a result of the preferential formation of a monophosphine–rhodium species.  相似文献   

6.
The coordination of Rh(PPh3)3Cl on a dicarbaundecaborate polyamide gives a new polymeric rhodium hydride complex with catalytic activity in the hydrosilylation of 1-hexene by triethylsilane. The rhodium derivative of 7,9-dicarbanido-undecaborate(11)-7,9-dicarboxyanilide was synthesized as a model of the monomeric unit. CoIII and NiIV bis(dicarbollyl) complexes also display catalytic activity in hydrosilylation reactions.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 4, pp. 960–962, April, 1991.  相似文献   

7.
A novel β-ketophosphenato ligand bearing a bulky substituent, Tbt(2,4,6-tris[bis(trimethylsilyl)methyl]phenyl), on the phosphorus atom was newly designed and synthesized as a heavier congener of a β-ketoiminato ligand. Rhodium and iridium complexes bearing this new β-ketophosphenato ligand have been synthesized and fully characterized by spectroscopic and elemental analyses together with X-ray crystallographic analyses. The results of NMR spectroscopic studies and the X-ray structural analyses suggested that the β-ketophosphenato ligand has unique electronic features due to the low-coordinated phosphorus atom. Comparison of properties between rhodium β-ketophosphenates 2a,b and rhodium β-ketoiminate 7 revealed the character of the β-ketophosphenato ligand, where the trans influence of the phosphorus atom should be stronger than the nitrogen atom of the β-ketoiminato ligand.  相似文献   

8.
Six new [RhBr(NHC)(cod)] (NHC = N‐heterocyclic carbene; cod = 1,5‐cyclooctadiene) type rhodium complexes ( 4–6 ) have been prepared by the reaction of [Rh(μ‐OMe)(cod)]2 with a series of corresponding imidazoli(in)ium bromides ( 1–3 ) bearing mesityl (Mes) or 2,4,6‐trimethylbenzyl (CH2Mes) substituents at N1 and N3 positions. They have been fully characterized by 1 H, 13 C and heteronuclear multiple quantum correlation NMR analyses, elemental analysis and mass spectroscopy. Complexes of type [(NHC)RhBr(CO)2] (NHC = imidazol‐2‐ylidene) ( 7b–9b ) were also synthesized to compare σ‐donor/π‐acceptor strength of NHC ligands. Transfer hydrogenation (TH) reaction of acetophenone has been comparatively studied by using complexes 4–6 as catalysts. The symmetrically CH2Mes‐substituted rhodium complex bearing a saturated NHC ligand ( 5a ) showed the highest catalytic activity for TH reaction. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Treatment of bis(mesitylene)niobium(0) with 6–7 equivalents of 2,6‐dimethylphenyl isocyanide (CNXyl) affords two products with the empirical formula Nb(CNXyl)n (n = 7 or 6), which have been shown to be the diamagnetic dimers bis[μ‐N,N′,N′′,N′′′‐tetrakis(2,6‐dimethylphenyl)squaramidinato(2?)]bis[pentakis(2,6‐dimethylphenyl isocyanide)niobium(I)], [Nb2(C9H9N)10(C36H36N4)] or [Nb(CNXyl)5]2[μ‐C4(NXyl)4xSolvent, 1 , and bis[μ‐N,N′,N′′,N′′′‐tetrakis(2,6‐dimethylphenyl)squaramidinato(2?)]bis[tetrakis(2,6‐dimethylphenyl isocyanide)niobium(I)] tetrahydrofuran trisolvate, [Nb2(C9H9N)8(C36H36N4)]·3C4H8O or [Nb(CNXyl)4]2[μ‐C4(NXyl)4]·3THF (THF = tetrahydrofuran), 2 . Each contains NbI bound to either five or four terminal isocyanides, respectively, and to an unprecedented bridging tetraarylsquaramidinate(2?) unit, coordinated as a bidentate ligand to each niobium center, symmetrically due to the crystallographic inversion center that coincides with the centroid of the central C4 unit. Thus, in the presence of CNXyl, the bis(mesitylene)niobium(0) is oxidized to niobium(I), resulting in the facile loss of both mesitylene groups and the reductive coupling of two CNXyl groups per niobium to provide the first examples of tetraarylsquaramidinate(2?) ligands, [cyclo‐C4N4Ar4]2?, coordinated to metals. In contrast, bis(mesitylene)niobium(0) reacts with the more crowded 2,6‐diisopropylphenyl isocyanide (CNDipp) to afford the paramagnetic monomer hexakis(2,6‐diisopropylphenyl isocyanide)niobium(0), [Nb(C13H17N)6] or Nb(CNDipp)6, 3 , the first zero‐valent niobium isocyanide analog of the highly unstable Nb(CO)6, which is presently only known to exist in an argon matrix at 4.2 K.  相似文献   

10.
Rhodium complexes bearing N-heterocyclic carbene (NHC) ligands were prepared from bis(η4-1,5-cyclooctadiene) dichlorodirhodium and 1-alkyl-3-methylimidazolium-2-carboxylate, and the catalytic properties of rhodium complexes prepared in the hydrosilylation of alkenes in ionic liquid media were investigated. It was found that both the catalytic activity and selectivity of the rhodium complexes bearing NHC ligands were influenced by the attached substituents of the imidazolium cation. Additionally, rhodium complexes bearing NHC ligands in ionic liquid BMimPF6 could be reused without noticeable loss of catalytic activity and selectivity.  相似文献   

11.
Organoboranes carrying electron‐withdrawing substituents are commonly used as Lewis acidic catalysts or cocatalysts in a variety of organic processes. These Lewis acids also became popular through their application in `frustrated Lewis pairs', i.e. combinations of Lewis acids and bases that are unable to fully neutralize each other due to steric or electronic effects. We have determined the crystal and molecular structures of four heteroleptic arylboranes carrying 2‐(trifluoromethyl)phenyl, 2,6‐bis(trifluoromethyl)phenyl, 3,5‐bis(trifluoromethyl)phenyl or mesityl substituents. [3,5‐Bis(trifluoromethyl)phenyl]bis[2‐(trifluoromethyl)phenyl]borane, C22H11BF12, (I), crystallizes with two molecules in the asymmetric unit which show very similar geometric parameters. In one of the two molecules, both trifluoromethyl groups of the 3,5‐bis(trifluoromethyl)phenyl substituent are disordered over two positions. In [3,5‐bis(trifluoromethyl)phenyl]bis[2,6‐bis(trifluoromethyl)phenyl]borane, C24H9BF18, (II), only one of the two meta‐trifluoromethyl groups is disordered. In [2,6‐bis(trifluoromethyl)phenyl]bis[3,5‐bis(trifluoromethyl)phenyl]borane, C24H9BF18, (III), both meta‐trifluoromethyl groups of only one 3,5‐bis(trifluoromethyl)phenyl ring are disordered. [3,5‐Bis(trifluoromethyl)phenyl]dimesitylborane, C26H25BF6, (IV), carries only one meta‐trifluoromethyl‐substituted phenyl ring, with one of the two trifluoromethyl groups disordered over two positions. In addition to compounds (I)–(IV), the structure of bis[2,6‐bis(trifluoromethyl)phenyl]fluoroborane, C16H6BF13, (V), is presented. None of the ortho‐trifluoromethyl groups is disordered in any of the five compounds. In all the structures, the boron centre is in a trigonal planar coordination. Nevertheless, the bond angles around this atom vary according to the bulkiness and mutual repulsion of the substituents of the phenyl rings. Also, the ortho‐trifluoromethyl‐substituted phenyl rings usually show longer B—C bonds and tend to be tilted out of the BC3 plane by a higher degree than the phenyl rings carrying ortho H atoms. A comparison with related structures corroborates the conclusions regarding the geometric parameters of the boron centre drawn from the five structures in this paper. On the other hand, CF3 groups in meta positions do not seem to have a marked effect on the geometry involving the boron centre. Furthermore, it has been observed for the structures reported here and those reported previously that for CF3 groups in ortho positions of the aromatic ring, disorder of the F atoms is less probable than for CF3 groups in meta or para positions of the ring.  相似文献   

12.
The solid‐state structure of the rhodium complex (dimethylamine–dimethylaminoborane–borane‐κ2H,H′)dihydridobis(triisopropylphosphane‐κP)rhodium(III) tetrakis[3,5‐bis(trifluoromethyl)phenyl]borate, [RhH2(C4H18B2N2)(C9H21P)2](C32H12BF24), is reported. The complex contains the linear diborazine H3B·NMe2BH2·NMe2H, a kinetically important intermediate in the transition‐metal‐mediated dehydrocoupling of H3B·NMe2H, ultimately affording the dimeric amino‐borane [H2BNMe2]2. The structure of the title complex contains a distorted octahedral RhIII centre, with mutually trans phosphane ligands and cis hydride ligands. The diborazine is bound through two Rh—H—B σ‐bonds and exhibits a gauche conformation with respect to the B—N—B—N backbone.  相似文献   

13.
The rhodium(I) complexes trans‐[Rh(diphos)(CO)Cl] 7 (diphos=pbpb), 8 (diphos=nbpb), and 9 (diphos=cbpb) were synthesized (Scheme 4) and used as catalysts for the carbonylation of MeOH to AcOH (Scheme 1). The trans coordination imposed by the rigid C‐spacer framework of the diphos ligands pbpb, nbpb, and cbpb, demonstrated by 31P‐NMR and IR spectroscopy of 7 – 9 and unambiguously confirmed by single‐crystal X‐ray structure analysis of 7 , improved the thermal stability of the rhodium(I) system under carbonylation conditions and, hence, the catalytic performance of the complexes. For the catalytic carbonylation of MeOH, the active catalyst could be prepared in situ from the mixture of [Rh(CO)2Cl]2 and the corresponding diphos ligand pbpb, nbpb, or cbpb, giving the same results as carbonylation in the presence of the isolated complexes 7, 8 or 9 (see Table). The highest activity was observed for complex 7 (or the mixture [Rh(CO)2Cl]2/pbpb, the catalytic turnover number (TON) being 950 after 15 min (170°, 22 bar).  相似文献   

14.
A series of rhodium(III) bis(quinolinyl)benzene (bisqx) complexes was studied as candidates for the homogeneous partial oxidation of methane. Density functional theory (DFT) (M06 with Poisson continuum solvation) was used to investigate a variety of (bisqx) ligand candidates involving different functional groups to determine the impact on RhIII(bisqx)‐catalyzed methane functionalization. The free energy activation barriers for methane C?H activation and Rh–methyl functionalization at 298 K and 498 K were determined. DFT studies predict that the best candidate for catalytic methane functionalization is RhIII coordinated to unsubstituted bis(quinolinyl)benzene (bisq). Support is also found for the prediction that the η2‐benzene coordination mode of (bisqx) ligands on Rh encourages methyl group functionalization by serving as an effective leaving group for SN2 and SR2 attack.  相似文献   

15.
A series of cationic rhodium(I) complexes [Rh(diene)(N^N)][BF4] (diene = 1,5-cyclooctadiene (cod), norbornadiene (nbd), tetrafluorobenzobarralene (tfb)), containing the optically pure bis(sulfoximine) ligand 1,2-bis(S-methyl-S-phenylsulfonimidoyl)benzene, have been synthesized and fully characterized. The structure of the R,R enantiomer of the ligand, and that of its cyclooctadiene–Rh(I) complex, were confirmed by means of single-crystal X-ray diffraction techniques. Studies on the catalytic activity of these complexes in acetophenone hydrosilylation and dimethyl itaconate hydrogenation are also reported.  相似文献   

16.
Our attempts to synthesize the N→Si intramolecularly coordinated organosilanes Ph2L1SiH ( 1 a ), PhL1SiH2 ( 2 a ), Ph2L2SiH ( 3 a ), and PhL2SiH2 ( 4 a ) containing a CH?N imine group (in which L1 is the C,N‐chelating ligand {2‐[CH?N(C6H3‐2,6‐iPr2)]C6H4}? and L2 is {2‐[CH?N(tBu)]C6H4}?) yielded 1‐[2,6‐bis(diisopropyl)phenyl]‐2,2‐diphenyl‐1‐aza‐silole ( 1 ), 1‐[2,6‐bis(diisopropyl)phenyl]‐2‐phenyl‐2‐hydrido‐1‐aza‐silole ( 2 ), 1‐tert‐butyl‐2,2‐diphenyl‐1‐aza‐silole ( 3 ), and 1‐tert‐butyl‐2‐phenyl‐2‐hydrido‐1‐aza‐silole ( 4 ), respectively. Isolated organosilicon amides 1 – 4 are an outcome of the spontaneous hydrosilylation of the CH?N imine moiety induced by N→Si intramolecular coordination. Compounds 1–4 were characterized by NMR spectroscopy and X‐ray diffraction analysis. The geometries of organosilanes 1 a – 4 a and their corresponding hydrosilylated products 1 – 4 were optimized and fully characterized at the B3LYP/6‐31++G(d,p) level of theory. The molecular structure determination of 1 – 3 suggested the presence of a Si?N double bond. Natural bond orbital (NBO) analysis, however, shows a very strong donor–acceptor interaction between the lone pair of the nitrogen atom and the formal empty p orbital on the silicon and therefore, the calculations show that the Si?N bond is highly polarized pointing to a predominantly zwitterionic Si+N? bond in 1 – 4 . Since compounds 1 – 4 are hydrosilylated products of 1 a – 4 a , the free energies (ΔG298), enthalpies (ΔH298), and entropies (ΔH298) were computed for the hydrosilylation reaction of 1 a – 4 a with both B3LYP and B3LYP‐D methods. On the basis of the very negative ΔG298 values, the hydrosilylation reaction is highly exergonic and compounds 1 a – 4 a are spontaneously transformed into 1 – 4 in the absence of a catalyst.  相似文献   

17.
Structures and spectroscopic characterization of the divalent complexes cis‐dibromidotetrakis(2,6‐dimethylphenyl isocyanide)iron(II) dichloromethane 0.771‐solvate, [FeBr2(C9H9N)4]·0.771CH2Cl2 or cis‐FeBr2(CNXyl)4·0.771CH2Cl2 (Xyl = 2,6‐dimethylphenyl), trans‐dibromidotetrakis(2,6‐dimethylphenyl isocyanide)iron(II), [FeBr2(C9H9N)4] or trans‐FeBr2(CNXyl)4, trans‐dibromidotetrakis(2,6‐dimethylphenyl isocyanide)cobalt(II), [CoBr2(C9H9N)4] or trans‐CoBr2(CNXyl)4, and trans‐dibromidobis(2,6‐dimethylphenyl isocyanide)nickel(II), [NiBr2(C9H9N)2] or trans‐NiBr2(CNXyl)2, are presented. Additionally, crystals grown from a cold diethyl ether solution of zero‐valent Fe(CNXyl)5 produced a structure containing a cocrystallization of mononuclear Fe(CNXyl)5 and the previously unknown dinuclear [Fe(CNXyl)3]22‐CNXyl)3, namely pentakis(2,6‐dimethylphenyl isocyanide)iron(0) tris(μ2‐2,6‐dimethylphenyl isocyanide)bis[tris(2,6‐dimethylphenyl isocyanide)iron(0)], [Fe(C9H9N)5][Fe2(C9H9N)9]. The (M)C—N—C(Xyl) angles of the isocyanide ligand are nearly linear for the metals in the +2 oxidation state, for which the ligands function essentially as pure donors. The νCN stretching frequencies for these divalent metal isocyanides are at or above that of the free ligand. Relative to FeII, in the structure containing iron in the formally zero‐valent oxidation state, the Fe—C bond lengths have shortened, the C[triple‐bond]N bond lengths have elongated, the (M)C—N—C(Xyl) angles of the terminal CNXyl ligands are more bent, and the νCN stretching frequencies have shifted to lower energies, all indicative of substantial M(dπ)→π* backbonding.  相似文献   

18.
The complexes {bis[(2‐diphenylphosphanyl)phenyl] ether‐κ2P,P′}(η4‐norbornadiene)rhodium(I) tetrafluoridoborate, [Rh(C7H8)(C36H28OP2)]BF4, and {bis[(2‐diphenylphosphanyl)phenyl] ether‐κ2P,P′}[η4‐(Z,Z)‐cycloocta‐1,5‐diene]rhodium(I) tetrafluoridoborate dichloromethane monosolvate, [Rh(C8H12)(C36H28OP2)]BF4·CH2Cl2, are applied as precatalysts in redox‐neutral atomic‐economic propargylic CH activation [Lumbroso et al. (2013). Angew. Chem. Int. Ed. 52 , 1890–1932]. In addition, the catalytically inactive pentacoordinated 18‐electron complex {bis[(2‐diphenylphosphanyl)phenyl] ether‐κ2P,P′}chlorido(η4‐norbornadiene)rhodium(I), [RhCl(C7H8)(C36H28OP2)], was synthesized, which can form in the presence of chloride in the reaction system.  相似文献   

19.
A new class of bidentate phosphoramidite ligands, based on a spiroketal backbone, has been developed for the rhodium‐catalyzed hydroformylation reactions. A range of short‐ and long‐chain olefins, were found amenable to the protocol, affording high catalytic activity and excellent regioselectivity for the linear aldehydes. Under the optimized reaction conditions, a turnover number (TON) of up to 2.3×104 and linear to branched ratio (l/b) of up to 174.4 were obtained in the RhI‐catalyzed hydroformylation of terminal olefins. Remarkably, the catalysts were also found to be efficient in the isomerization–hydroformylation of some internal olefins, to regioselectively afford the linear aldehydes with TON values of up to 2.0×104 and l/b ratios in the range of 23.4–30.6. X‐ray crystallographic analysis revealed the cis coordination of the ligand in the precatalyst [Rh( 3 d )(acac)], whereas NMR and IR studies on the catalytically active hydride complex [HRh(CO)2( 3 d )] suggested an eq–eq coordination of the ligand in the species.  相似文献   

20.
Salicylaldimine ligands, such as 5‐nitro‐N(2,6‐diisopropylphenyl)salicylaldimine, 3,5‐dinitro‐N(2,6‐diisopropylphenyl)salicylaldimine, and 3‐phenyl‐N(2,6‐diisopropylphenyl) salicylaldimine were checked in the oxidative addition to bis(1,5‐cyclooctadiene)nickel(0) to prepare, after activation by methylaluminoxane (MAO), novel nickel‐based catalytic systems active in the polymerization of methyl methacrylate. The catalytic behavior of the aforementioned systems, in terms of activity, molecular weight, and polydispersity of the resulting poly(methyl methacrylate) as well as its stereoregularity degree, was investigated as a function of the Al/Ni molar ratio, reaction temperature, and nature of the salicylaldimine ligand. The effect of ethylene atmosphere present during the preparation of the catalyst precursors was also investigated. The results are discussed and compared with those previously obtained by bis(salicylaldiminate)nickel(II)/MAO catalytic systems. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1716–1724, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号