首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
A high‐order difference method based multiphase model is proposed to simulate nonlinear interactions between water wave and submerged coastal structures. The model is based on the Navier–Stokes equations using a constrained interpolation profile (CIP) method for the flow solver, and employs an immersed boundary method (IBM) for the treatment of wave–structure interactions. A more accurate interface capturing scheme, the volume of fluid/weighed line interface calculation (VOF/WLIC) scheme, is adopted as the interface capturing method. A series of computations are performed to verify the application of the model for simulations of fluid interaction with various structures. These problems include flow over a fixed cylinder, water entry of a circular cylinder and solitary waves passing various submerged coastal structures. Computations are compared with the available analytical, experimental and other numerical results and good agreement is obtained. The results of this study demonstrate the accuracy and applications of the proposed model to simulate the nonlinear flow phenomena and capture the complex free surface flow. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
4.
The present study develops a 2‐D numerical scheme that combines the vortex method and the boundary integral method by a Helmholtz decomposition to investigate the interaction of water waves with submerged obstacles. Viscous effects and generation of vorticity on the free surface are neglected. The second kind of Fredholm integral equations that govern the strengths of vortex sheets along boundaries are solved iteratively. Vorticity is convected and diffused in the fluid via a Lagrangian vortex (blob) method with varying cores, using the particle strength exchange method for diffusion, with particle redistribution. A grid‐convergence study of the numerical method is reported. The inviscid part of the method and the simulation of the free‐surface motion are tested using two calculations: solitary wave propagation in a uniform channel and a moving line vortex in the fluid. Finally, the full model is verified by simulating periodic waves travelling over a submerged rectangular obstacle using nonuniform vortex blobs with a mapping of the redistribution lattice. Overall, the numerical model predicts the vortices' evolution and the free‐surface motion reasonably well. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
A wave absorption filter for the far‐end boundary of semi‐infinite large reservoirs is developed for numerical simulation of unsteady free surface flows. Mathematical model is based on finite volume solution of the Navier–Stokes equations and depth‐integrated continuity equation to track the free surface. The Sommerfeld boundary condition is applied at the far‐end of the truncated computational domain. A dissipation zone is formed by applying artificial pressure on water surface to dissipate the kinetic energy of the outgoing waves. The computational scheme is tested to verify the conservation of total fluid volume in the domain for long simulation durations. Combination of the Sommerfeld boundary and dissipation zone can effectively minimize reflections and prevent cumulative changes in total fluid volume in the domain. Solitary wave, nonlinear periodic waves and irregular waves are simulated to illustrate the numerical developments. Earthquake excited surface waves and nonlinear hydrodynamic pressures in a dam–reservoir are computed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
A meshless numerical model for nonlinear free surface water wave is presented in this paper. An approach of handling the moving free surface boundary is proposed. Using the fundamental solution of the Laplace equation as the radial basis functions and locating the source points outside the computational domain, the problem is solved by collocation of only a few boundary points. Present model is first applied to simulate the generation of periodic finite‐amplitude waves with high wave‐steepness and then is employed to simulate the modulation of monochromatic waves passing over a submerged obstacle. Good agreements are observed as compared with experimental data and other numerical models. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
The purpose of the present study is to establish a numerical model appropriate for solving inviscid/viscous free‐surface flows related to nonlinear water wave propagation. The viscous model presented herein is based on the Navier–Stokes equations, and the free‐surface is calculated through an arbitrary Lagrangian–Eulerian streamfunction‐vorticity formulation. The streamfunction field is governed by the Poisson equation, and the vorticity is obtained on the basis of the vorticity transport equation. For computing the inviscid flow the Laplace streamfunction equation is used. These equations together with the respective (appropriate) fully nonlinear free‐surface boundary conditions are solved using a finite difference method. To demonstrate the model feasibility, in the present study we first simulate collision processes of two solitary waves of different amplitudes, and compute the phenomenon of overtaking of such solitary waves. The developed model is subsequently applied to calculate (both inviscid and the viscous) flow field, as induced by passing of a solitary wave over submerged rectangular structures and rigid ripple beds. Our study provides a reasonably good understanding of the behavior of (inviscid/viscous) free‐surface flows, within the framework of streamfunction‐vorticity formulation. The successful simulation of the above‐mentioned test cases seems to suggest that the arbitrary Lagrangian–Eulerian/streamfunction‐vorticity formulation is a potentially powerful approach, capable of effectively solving the fully nonlinear inviscid/viscous free‐surface flow interactions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
A problem of generation of nonlinear unsteady waves on the surface of an ideal liquid in an infinitely deep fluid due to the motion of a submerged elliptic cylinder is considered. The initial formulation of the problem is reduced to an integrodifferential system of equations for the function defining the free surface shape and for the normal and tangential components of velocity on the free surface. The small-time asymptotics of the solution is constructed for the case of cylinder motion with a constant acceleration from the state at rest.  相似文献   

9.
A finite difference scheme using a modified marker‐and‐cell (MAC) method is applied to investigate the characteristics of non‐linear wave motions and their interactions with a stationary three‐dimensional body inside a numerical wave tank (NWT). The Navier–Stokes (NS) equation is solved for two fluid layers, and the boundary values are updated at each time step by a finite difference time marching scheme in the frame of a rectangular co‐ordinate system. The viscous stresses and surface tension are neglected in the dynamic free‐surface condition, and the fully non‐linear kinematic free‐surface condition is satisfied by the density function method developed for two fluid layers. The incident waves are generated from the inflow boundary by prescribing a velocity profile resembling flexible flap wavemaker motions, and the outgoing waves are numerically dissipated inside an artificial damping zone located at the end of the tank. The present NS–MAC NWT simulations for a vertical truncated circular cylinder inside a rectangular wave tank are compared with the experimental results of Mercier and Niedzwecki, an independently developed potential‐based fully non‐linear NWT, and the second‐order diffraction computation. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
The nonlinear radiated waves generated by a structure in forced motion, are simulated numerically based on the potential theory. A fully nonlinear numerical model is developed by using a higher-order boundary element method (HOBEM). In this model, the instantaneous body position and the transient free surface are updated at each time step. A Lagrangian technique is employed as the time marching scheme on the free surface. The mesh regridding and interpolation methods are adopted to deal with the possible numerical instability. Several auxiliary functions are proposed to calculate the wave loads indirectly, instead of directly predicting the temporal derivative of the velocity potential. Numerical experiments are carried out to simulate the heave motions of a submerged sphere in infinite water depth, the heave and pitch motions of a truncated flared cylinder in finite depth. The results are verified against the published numerical results to ensure the effectiveness of the proposed model. Moreover, a series of higher harmonic waves and force components are obtained by the Fourier transformation to investigate the nonlinear effect of oscillation frequency. The difference among fully nonlinear, body-nonlinear and linear results is analyzed. It is found that the nonlinearity due to free surface and body surface has significant influences on the numerical results of the radiated waves and forces.  相似文献   

11.
Viscous waves and waves over a submerged cylinder in a stationary tank are simulated using a volume-of-fluid numerical scheme on adaptive hierarchical grids. A high resolution interface-capturing method is used to advect the free surface interface and the Navier–Stokes equations are discretised using finite volumes with collocated primitive variables and solved using a Pressure Implicit with Splitting of Operators (PISO) algorithm. The cylinder is modelled by using the technique of Cartesian cut cells. Results of flow of a single fluid past a cylinder at Reynolds number Re=100 are presented and found to agree well with experimental and other numerical data. Viscous free surface waves in a tank are simulated using uniform and quadtree grids for Reynolds numbers in the range from 2 to 2000, and the results compared against analytical solutions where available. The quadtree-based results are of the same accuracy as those on the equivalent uniform grids, and retain a sharp interface at the free surface while leading to considerable savings in both storage and CPU requirements. The nonlinearity in the wave is investigated for a selection of initial wave amplitudes. A submerged cylinder is positioned in the tank and its influence on the waves as well as the hydrodynamic loading on the cylinder is investigated.  相似文献   

12.
The head on collisions of trains of solitons induced by a two-dimensional submerged elliptical cylinder at critical speed in shallow water are studied based on velocity potential theory. The boundary value problems are solved through boundary element method (BEM). The nonlinear free surface boundary conditions are satisfied. The mixed Euler–Lagrangian method is adopted to track the free surface through a time stepping scheme. The effects of thickness and velocity of the elliptical cylinder on the evolution of solitary waves have been investigated. Two sets of solitons are truncated from these trains of solitary waves. The head-on collisions of these solitons have been simulated. The wave profiles and velocity fields during collision have been analysed. The propagation of solitary waves is the transmissions of kinetic energy and the collision processes are the results of the dynamic balance of potential energy and kinematic energy.  相似文献   

13.
The linear water wave radiation/diffraction problem for a small submerged cylinder is solved analytically in terms of an asymptotic expansion. The expansion parameter is the radius of the cylinder divided by its depth of submergence. The influence of the cylinder on the wave field is represented by a rotating dipole, which obeys the free-surface conditions and radiation conditions. Our results agree fully with the classical results. We find a basic physical reason why the circular shape is exceptional compared to all other obstacle geometries: it is because of the circular paths of fluid particles in free linear deep-water waves.  相似文献   

14.
A fully nonlinear irregular wave tank has been developed using a three‐dimensional higher‐order boundary element method (HOBEM) in the time domain. The Laplace equation is solved at each time step by an integral equation method. Based on image theory, a new Green function is applied in the whole fluid domain so that only the incident surface and free surface are discretized for the integral equation. The fully nonlinear free surface boundary conditions are integrated with time to update the wave profile and boundary values on it by a semi‐mixed Eulerian–Lagrangian time marching scheme. The incident waves are generated by feeding analytic forms on the input boundary and a ramp function is introduced at the start of simulation to avoid the initial transient disturbance. The outgoing waves are sufficiently dissipated by using a spatially varying artificial damping on the free surface before they reach the downstream boundary. Numerous numerical simulations of linear and nonlinear waves are performed and the simulated results are compared with the theoretical input waves. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
IntroductionIn 1 83 1 ,Faraday[1]reportedhisexperimentalobservationofsurfacewavesindifferentfluidscoveringahorizontalplatesubjectedtoaverticalvibration ,andheobservedthesurfacestandingwavesoffluidsliketheteethofaveryshortcoarsecomb .Heremarksthatthesesurfacewaveshaveafrequencyequaltoonehalfthatoftheexcitation .ThisisthefamousFaradayexperiment.WedesignatethosefluidsurfacewavesformedbyverticallyexcitationandhaveafrequencyequaltoonehalfthatoftheexcitationasFaradaywaves.FollowingthisproblemMatth…  相似文献   

16.
Vortex methods have found wide applications in various practical problems. The use of vortex methods in free surface flow problems, however, is still very limited. This paper demonstrates a vortex method for practical computation of non-linear free surface flows produced by moving bodies. The method is a potential flow formulation which uses the exact non-linear free surface boundary condition at the exact location of the instantaneous free surface. The position of the free surface, on which vortices are distributed, is updated using a Lagrangian scheme following the fluid particles on the free surface. The vortex densities are updated by the non-linear dynamic boundary condition, derived from the Euler equations, with an iterative Lagrangian numerical scheme. The formulation is tested numerically for a submerged circular cylinder in unsteady translation. The iteration is shown to converge for all cases. The results of the unsteady simulations agree well with classical linearized solutions. The stability of the method is also discussed.  相似文献   

17.
An iterative boundary element method, which was originally developed for both two‐ and three‐dimensional cavitating hydrofoils moving steadily under a free surface, is modified and extended to predict the wave pattern and wave resistance of surface piercing bodies, such as ship hulls and vertical struts. The iterative nonlinear method, which is based on the Green theorem, allows the separation of the surface piercing body problem and the free‐surface problem. The free‐surface problem is also separated into two parts; namely, left and right (with respect to x axis) free‐surface problems. Those all (three) problems are solved separately, with the effects of one on the other being accounted for in an iterative manner. The wetted surface of the body (ship hull or strut, including cavity surface if exists) and the left and right parts with respect to x axis of free surface are modelled with constant strength dipole and constant strength source panels. In order to prevent upstream waves, the source strengths from some distance in front of the body to the end of the truncated upstream boundary are enforced to be zero. No radiation condition is enforced for downstream and transverse boundaries. A transverse wave cut technique is used for the calculation of wave resistance. The method is first applied to a point source and a three‐dimensional submerged cavitating hydrofoil to validate the method and a Wigley hull and a vertical strut to compare the results with those of experiments. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
A horizontally curvilinear non‐hydrostatic free surface model that embeds the second‐order projection method, the so‐called θ scheme, in fractional time stepping is developed to simulate nonlinear wave motion in curved boundaries. The model solves the unsteady, Navier–Stokes equations in a three‐dimensional curvilinear domain by incorporating the kinematic free surface boundary condition with a top‐layer boundary condition, which has been developed to improve the numerical accuracy and efficiency of the non‐hydrostatic model in the standard staggered grid layout. The second‐order Adams–Bashforth scheme with the third‐order spatial upwind method is implemented in discretizing advection terms. Numerical accuracy in terms of nonlinear phase speed and amplitude is verified against the nonlinear Stokes wave theory over varying wave steepness in a two‐dimensional numerical wave tank. The model is then applied to investigate the nonlinear wave characteristics in the presence of dispersion caused by reflection and diffraction in a semicircular channel. The model results agree quantitatively with superimposed analytical solutions. Finally, the model is applied to simulate nonlinear wave run‐ups caused by wave‐body interaction around a bottom‐mounted cylinder. The numerical results exhibit good agreement with experimental data and the second‐order diffraction theory. Overall, it is shown that the developed model, with only three vertical layers, is capable of accurately simulating nonlinear waves interacting within curved boundaries. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
This work proposes an innovative numerical method for simulating the interaction of fluid with irregularly shaped stationary structures based on Cartesian grids. Instead of prescribing an artificial force to enforce the no‐slip boundary condition at the solid–fluid interface, this work imposes two boundary velocities, referred to as the solid and mass‐conserving boundary velocities, to satisfy the no‐slip boundary condition and mass conservation in the ghost cells around the immersed solid boundary. Both the traditional level set method [41] and the hybrid particle level set method [45] were used to represent the solid boundary and the complex free‐surface evolution, respectively. Consequently, the boundary velocities close to the immersed solid boundary can be determined in terms of the level set function and the neighboring fluid velocity. The projection method is further modified to incorporate the solid and mass‐conserving boundary velocities into the solution algorithm. A series of numerical experiments were conducted to demonstrate the feasibility of the proposed method. They involved uniform flow past a stationary circular cylinder and the propagation of water waves over a submerged trapezoidal breakwater. Comparisons between the numerical results and experimental data showed very good agreement in all cases of interest. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
The problem of the stabilization of the diffusion-induced flow over a sphere submerged in a continuously stratified fluid is solved using both asymptotic and numerical methods. The analytical solution describes the structure of the main convective cells, including thin meridional jets flowing along the surface and plumes spreading from the flow convergence regions above the upper and lower poles of the sphere which gradually return the fluid particles to the neutral buoyancy horizon. The total width of the flows adjacent to the surface exceeds the thickness of the salinity deficit layer or the density boundary layer. The numerical solution of the complete problem in the nonlinear formulation describes the main convective cells and two systems of unsteady integral waves formed in the vicinity of the sphere poles. At large times, out of the entire system of internal waves only those nearest to the neighborhood of their horizon of formation remain clearly defined. The calculated flow patterns are in agreement with each other and the data of shadow visualization of the stratified fluid structure near a submerged obstacle at rest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号