首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The stereoselective formation of 1,2‐cis‐glycosidic bonds is challenging. However, 1,2‐cis‐selectivity can be induced by remote participation of C4 or C6 ester groups. Reactions involving remote participation are believed to proceed via a key ionic intermediate, the glycosyl cation. Although mechanistic pathways were postulated many years ago, the structure of the reaction intermediates remained elusive owing to their short‐lived nature. Herein, we unravel the structure of glycosyl cations involved in remote participation reactions via cryogenic vibrational spectroscopy and first principles theory. Acetyl groups at C4 ensure α‐selective galactosylations by forming a covalent bond to the anomeric carbon in dioxolenium‐type ions. Unexpectedly, also benzyl ether protecting groups can engage in remote participation and promote the stereoselective formation of 1,2‐cis‐glycosidic bonds.  相似文献   

3.
1‐Deoxysphingolipids are a recently described class of sphingolipids that have been shown to be associated with several disease states including diabetic and hereditary neuropathy. The identification and characterization of 1‐deoxysphingolipids and their metabolites is therefore highly important. However, exact structure determination requires a combination of sophisticated analytical techniques due to the presence of various isomers, such as ketone/alkenol isomers, carbon–carbon double‐bond (C=C) isomers and hydroxylation regioisomers. Here we demonstrate that cryogenic gas‐phase infrared (IR) spectroscopy of ionized 1‐deoxysphingolipids enables the identification and differentiation of isomers by their unique spectroscopic fingerprints. In particular, C=C bond positions and stereochemical configurations can be distinguished by specific interactions between the charged amine and the double bond. The results demonstrate the power of gas‐phase IR spectroscopy to overcome the challenge of isomer resolution in conventional mass spectrometry and pave the way for deeper analysis of the lipidome.  相似文献   

4.
C3H7+ ions were formed in the cell of a Fourier transform ion cyclotron resonance mass spectrometer and assayed by their multi-photon dissociation (MPD) behavior, triggered by the absorption of tunable IR radiation from a free-electron laser source providing a high fluence. The derived experimental IRMPD spectrum, which reflects the active vibrational modes of the ion, was compared with the IR spectra calculated for the optimized structures of the most-stable species on the C3H7+ potential energy surface, namely, a chiral iC3H7+ ion of C2 symmetry and an asymmetric corner-protonated cyclopropane, cC3H7+. The significant features in the IRMPD spectra of both the unlabeled and the perdeuterated ions obtained by ionization and fragmentation of isobutane or 2-chloro[D7]propane confirm the presence of the isopropyl cation, the ground-state isomer, whose IR spectroscopic features can thus be comparatively checked in the gas phase and in condensed superacid media. Details of the IRMPD features are suggested to result from the nearly barrierless interconversion of the two C2 enantiomers.  相似文献   

5.
Surface‐enhanced infrared absorption spectroscopy (SEIRA) of methanol, ethanol, 1‐propanol, and 2‐propanol in thin films on planar silver halide (AgX) fibers under slow N2 flow using 1 sec scans reveals structure in absorbance–time plots. The absorption intensities show extra enhancements (3×) in the absorbance (O? H stretch) ascribed to oligomers present at the AgX surface (molecule enhanced, thus MOSEIRA).This is above those due to amplification (40×, 20 reflections) and enhancement (30×, image dipoles or surface phonon polaritons). In the case of ethanol an excellent initial pentamer spectrum evolves over 8–10 min to a mixture of pentamer, tetramer, and trimer spectra that within another minute forms small oligomers and monomers. We use a new type of cell for infrared spectroscopy containing an AgX planar fiber. The optical configuration leads to a vicinal region at the surface defined by evanescent waves. Within this region are surface‐induced organized species such as ethanol oligomers. The planar AgX fiber supports 20 reflections and transmits light over a wide visible–infrared wavelength range. Short scan times permit the study of volatile substrates or solvents, including the effects of solvent polarity.  相似文献   

6.
7.
Protonation at the formyl oxygen atom of benzaldehydes leading to the formation of carboxonium ions yields two distinct isomers, depending on the relative orientation of the proton either cis or trans with respect to the hydrogen atom on the adjacent carbon. In this context, the IR multiple photon dissociation (IRMPD) spectra of protonated ortho, meta, and para-hydroxybenzaldehydes ( OH−BZH+ ), delivered into the gas phase by electrospray ionization of hydro-alcoholic solutions, are reported in the 3200–3700 cm−1 spectral range. This range is characteristic of O−H stretching modes and thus able to differentiate cis and trans carboxonium isomers. Comparison between IRMPD spectra and DFT calculations at the B3LYP/6-311++G(2df2p) level suggests that for both p- OH−BZH+ and m- OH−BZH+ only cis conformers are present in the ion population analyzed. For o- OH−BZH+ , IRMPD spectroscopy points to a mixture comprising one trans and more than one cis conformers. The energy barrier for cis–trans isomerization calculated for each OH−BZH+ isomer is a measure of the degree of π-electron delocalization. Furthermore, IRMPD spectra of p- OH−BZH+ , m- OH−BZH+ and protonated phenol (this last used as reference) were recorded also in the fingerprint range. Both the observed C−O and O−H stretching vibrations appear to be a measure of π-electron delocalization in the ions.  相似文献   

8.
In an attempt to produce the 2‐norbornyl cation (2NB+) in the gas phase, protonation of norbornene was accomplished in a pulsed discharge ion source coupled with a supersonic molecular beam. The C7H11+ cation was size‐selected in a time‐of‐flight mass spectrometer and investigated with infrared laser photodissociation spectroscopy using the method of “tagging” with argon. The resulting vibrational spectrum, containing sharp bands in the C? H stretching and fingerprint regions, was compared to that predicted by computational chemistry. However, the measured spectrum did not match that of 2NB+, prompting a detailed computational study of other possible isomers of C7H11+. This study finds five isomers more stable than 2NB+. The spectrum obtained corresponds to the 1,3‐dimethylcyclopentenyl cation, the global minimum‐energy structure for C7H11+, which is produced through an unanticipated ring‐opening rearrangement path.  相似文献   

9.
10.
Most proteins in proteomics are identified from tandem mass spectra of doubly protonated tryptic peptides. Statistical studies indicate that these spectra fall into two distinct classes. IR spectroscopy experiments and DFT calculations performed on model b2 ions show that peptides producing Class I spectra form protonated oxazolone ions (see figure) and not protonated diketopiperazines as proposed elsewhere.

  相似文献   


11.
The influence of an acetamido group in directing the preferred choice of hydration sites in glucosamine and a consequent extension of the working rules governing regioselective hydration and conformational choice, have been revealed through comparisons between the conformations and structures of “free” and multiply hydrated phenyl N‐acetyl‐β‐D ‐glucosamine (βpGlcNAc) and phenyl β‐D ‐glucopyranoside (βpGlc), isolated in the gas phase at low temperatures. The structures have been assigned through infrared ion depletion spectroscopy conducted in a supersonic jet expansion, coupled with computational methods. The acetamido motif provides a hydration focus that overwhelms the directing role of the hydroxymethyl group; in multiply hydrated βpGlcNAc the water molecules are all located around the acetamido motif, on the “axial” faces of the pyranose ring rather than around its edge, despite the equatorial disposition of all the hydrophilic groups in the ring. The striking and unprecedented role of the C‐2 acetamido group in controlling hydration structures may, in part, explain the differing and widespread roles of GlcNAc, and perhaps GalNAc, in nature.  相似文献   

12.
13.
14.
Coordination complexes of the magnesium nitrate cation with water [MgNO(3)(H(2)O)(n)](+) up to n=7 are investigated by experiment and theory. The fragmentation patterns of [MgNO(3)(H(2)O)(n)](+) clusters generated via electrospray ionization indicate a considerable change in stability between n=3 and 4. Further, ion-molecule reactions of mass-selected [MgNO(3)(H(2)O)(n)](+) cations with D(2)O reveal the occurrence of consecutive replacement of water ligands by heavy water, and in this respect the complexes with n=4 and 5 are somewhat more reactive than their smaller homologs with n=1-3 as well as the larger clusters with n=6 and 7. For the latter two ions, the theory suggests the existence of isomers, such as complexes with monodentate nitrato ligands as well as solvent-separated ion pairs with a common solvation shell. The reactions observed and the ion thermochemistry are discussed in the context of ab initio calculations, which also reveal the structures of the various hydrated cation complexes.  相似文献   

15.
Complexes of PheAla and AlaPhe with alkali metal ions Na+ and K+ are generated by electrospray ionization, isolated in the Fourier‐transform ion cyclotron resonance (FT–ICR) ion trapping mass spectrometer, and investigated by infrared multiple‐photon dissociation (IRMPD) using light from the FELIX free electron laser over the mid‐infrared range from 500 to 1900 cm?1. Insight into structural features of the complexes is gained by comparing the obtained spectra with predicted spectra and relative free energies obtained from DFT calculations for candidate conformers. Combining spectroscopic and energetic results establishes that the metal ion is always chelated by the amide carbonyl oxygen, whilst the C‐terminal hydroxyl does not complex the metal ion and is in the endo conformation. It is also likely that the aromatic ring of Phe always chelates the metal ion in a cation‐π binding configuration. Along with the amide CO and ring chelation sites, a third Lewis‐basic group almost certainly chelates the metal ion, giving a threefold chelation geometry. This third site may be either the C‐terminal carbonyl oxygen, or the N‐terminal amino nitrogen. From the spectroscopic and computational evidence, a slight preference is given to the carbonyl group, in an ROaOt chelation pattern, but coordination by the amino group is almost equally likely (particularly for K+PheAla) in an ROaNt chelation pattern, and either of these conformations, or a mixture of them, would be consistent with the present evidence. (R represents the π ring site, Oa the amide oxygen, Ot the terminal carbonyl oxygen, and Nt the terminal nitrogen.) The spectroscopic findings are in better agreement with the MPW1PW91 DFT functional calculations of the thermochemistry compared with the B3LYP functional, which seems to underestimate the importance of the cation–π interaction.  相似文献   

16.
17.
18.
The gas-phase structures of protonated uracil, thymine, and cytosine are probed by using mid-infrared multiple-photon dissociation (IRMPD) spectroscopy performed at the Free Electron Laser facility of the Centre Laser Infrarouge d'Orsay (CLIO), France. Experimental infrared (IR) spectra are recorded for ions that were generated by electrospray ionization, isolated, and then irradiated in a quadrupole ion trap; the results are compared to the calculated infrared absorption spectra of the different low-lying isomers (computed at the B3LYP/6-31++G(d,p) level). For each protonated base, the global energy minimum corresponds to an enolic tautomer, whose infrared absorption spectrum matched very well with the experimental IRMPD spectrum, with the exception of a very weak IRMPD signal observed at about 1800 cm(-1) in the case of the three protonated bases. This signal is likely to be the signature of the second-energy-lying oxo tautomer. We thus conclude that within our experimental conditions, two tautomeric ions are formed which coexist in the quadrupole ion trap.  相似文献   

19.
A detailed infrared spectroscopy analysis in the 2500 to 3800 cm–1 region has been used to study the formation of species in samples of iron oxides embedded in silica xerogel matrix. We report the presence of , , and forms of iron oxyhydroxides as intermediate species in the formation of -Fe2O3, -Fe2O3 and -Fe2O3 starting from three different iron precursors: iron nitrate, iron chloride and nanometric Fe particles prepared by chemical reduction. Our results show that under thermal dehydration and forms of iron oxyhydroxides transform into hematite and maghemite, respectively, whereas the form transform to the -Fe2O3 without going through an intermediate iron oxide phase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号