首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Herein, we present details of our conformationally flexible, 1,3‐diamine‐tethered guanidine/bisthiourea organocatalysts for chemo‐, regio‐, and enantioselective 1,4‐type Friedel–Crafts reactions of phenols. These organocatalysts show a unique stereo‐discrimination governed by the differential activation entropy (ΔΔS), rather than by the differential activation enthalpy (ΔΔH). Extensive kinetic analyses using Eyring plots for a series of guanidine/bisthiourea organocatalysts revealed the key structural motif in the catalysts associated with a large magnitude of differential activation entropy (ΔΔS). A plausible guanidine–thiourea cooperative mechanism for the enantioselective Friedel–Crafts reaction is proposed.  相似文献   

2.
K01-0509 B is a novel natural product which contains a carbamoylated cyclic guanidine. Our asymmetric total synthesis features a Sharpless asymmetric epoxidation and a stereocontrolled construction of the cyclic guanidine via an asymmetric nitroaldol reaction, followed by intramolecular SN2 cyclization. These reactions allowed the cyclic guanidine and the adjacent hydroxy group to be assembled, facilitating the asymmetric total synthesis and determination of the absolute stereochemistry of K01-0509 B. [reaction: see text].  相似文献   

3.
This review focuses on a new concept in catalytic asymmetric reactions that was first realized for the use of heterobimetallic complexes. As these heterobimetallic complexes function as both a Brønsted base and as a Lewis acid, just like an enzyme, they make possible a variety of efficient catalytic asymmetric reactions. This heterobimetallic concept should prove to be applicable to a variety of new asymmetric catalyses. The first part of this review describes the development of rare-earth–alkali metal complexes such as LnM3tris(binaphthoxide) complexes (LnMB, Ln = rare-earth metal, M = alkali metal), which are readily prepared from the corresponding rare-earth trichlorides or rare-earth isopropoxides, and their application to catalytic asymmetric synthesis. By using a catalytic amount of LnMB complexes several asymmetric reactions proceed efficiently to give the corresponding desired products in up to 98% ee: LnLB-catalyzed asymmetric nitroaldol reactions (L = Li), LnSB-catalyzed asymmetric Michael reactions (S ? Na), and LnPB-catalyzed asymmetric hydrophosphonylations of either imines or aldehydes (P ? K). Applications of these heterobimetallic catalysts to the syntheses of several biologically and medicinally important compounds are also described. Spectral analyses and computational simulations of the asymmetric reactions catalyzed by the heterobimetallic complexes reveal that the two different metals play different roles to enhance the reactivity of both reaction partners and to position them. From mechanistic considerations, a useful activation of the heterobimetallic catalyses was realized by addition of alkali metal reagents. The second part describes the development of another type of heterobimetallic catalysts featuring Group 13 elements such as Al and Ga as the central metal. Among them, the AlLibis(binaphthoxide) complex (ALB) is an effective catalyst for asymmetric Michael reactions, tandem Michael–aldol reactions, and hydrophosphonylation of aldehydes.  相似文献   

4.
Acid–base bifunctional mesoporous silica nanoparticles (MSN) were prepared by a one‐step synthesis by co‐condensation of tetraethoxysilane (TEOS) and silanes possessing amino and/or sulfonic acid groups. Both the functionality and morphology of the particles can be controlled. The grafted functional groups were characterized by using solid‐state 29Si and 13C cross‐polarization/magic angle spinning (CP/MAS) NMR spectroscopy, thermal analysis, and elemental analysis, whereas the structural and the morphological features of the materials were evaluated by using XRD and N2 adsorption–desorption analyses, and SEM imaging. The catalytic activities of the mono‐ and bifunctional mesoporous hybrid materials were evaluated in carbon–carbon coupling reactions like the nitroaldol reaction and the one‐pot deacetalization–nitroaldol and deacetalization–aldol reactions. Among all the catalysts evaluated, the bifunctional sample containing amine and sulfonic acid groups (MSN–NNH2–SO3H) showed excellent catalytic activity, whereas the homogeneous catalysts were unable to initiate the reaction due to their mutual neutralization in solution. Therefore a cooperative acid–base activation is envisaged for the carbon–carbon coupling reactions.  相似文献   

5.
G. Smitha 《合成通讯》2013,43(12):1795-1800
The asymmetric synthesis of (+)‐epi‐cytoxazone, a stereoisomer of potent cytokine modulator cytoxazone, starting from anisaldehyde in six steps, is described. The required configuration was established via Sharpless kinetic resolution followed by the Mitsunobu reaction.  相似文献   

6.
This article reports a novel category of helical substituted polyacetylenes bearing pendant thiourea groups and showing remarkable asymmetric catalysis ability. Thiourea‐based monomer and another chiral monomer underwent copolymerization, affording copolymers with considerable optical activity. The copolymers were used as chiral organocatalyst to homogeneously catalyze the asymmetric Michael addition of diethyl malonate to trans‐β‐nitrostyrene. During catalysis, a synergetic effect occurred between the pendant thiourea moieties and the helical structures in the polymer backbones. The enantioselectivity of the reaction was governed by the thiourea moieties. Meanwhile, the concaves along the helices provided specific domains where the substrates and catalytic groups were packed together, leading to a remarkable enhancement of product yield and enantioselectivity. Product with high yield (85%) and satisfactory ee (up to 72%) can be obtained. The present helical polymers open up new opportunities for developing macromolecules as mimetic enzymes catalyzing asymmetric reactions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1816–1823  相似文献   

7.
The development of atom-economical catalytic asymmetric reactions based on two distinct sets of catalyst, a rare earth metal/amide-based ligand catalyst and a soft Lewis acid/hard Br?nsted base catalyst, is reviewed. These catalytic systems exhibit high catalytic activity and stereoselectivity by harnessing a cooperative catalysis through hydrogen bond/metal coordination and soft-soft interactions/hard-hard interactions, respectively. The effectiveness of these cooperative catalysts is clearly delineated by the high stereoselectivity in reactions with highly coordinative substrates, and the specific activation of otherwise low-reactive pronucleophiles under proton transfer conditions. The rare earth metal/amide-based ligand catalyst was successfully applied to catalytic asymmetric aminations, nitroaldol (Henry) reactions, Mannich-type reactions, and conjugate addition reactions, generating stereogenic tetrasubstituted centers. Catalytic asymmetric amination and anti-selective catalytic asymmetric nitroaldol reactions were successfully applied to the efficient enantioselective synthesis of therapeutic candidates, such as AS-3201 and the β(3)-adrenoreceptor agonist, showcasing the practical utility of the present protocols. The soft Lewis acid/hard Br?nsted base cooperative catalyst was specifically developed for the chemoselective activation of soft Lewis basic allylic cyanides and thioamides, which are otherwise low-reactive pronucleophiles. The cooperative action of the catalyst allowed for efficient catalytic generation of active carbon nucleophiles in situ, which were integrated into subsequent enantioselective additions to carbonyl-type electrophiles.  相似文献   

8.
《Tetrahedron: Asymmetry》2014,25(22):1478-1487
Enantiomerically pure oxazoline ligands with variously substituted 1,2,4-triazine rings have been synthesized using the Pd-catalysed cross-coupling amination of 3-halo-1,2,4-triazines. The catalytic efficiency of the ligands was studied in the asymmetric Henry reaction of nitromethane with several aldehydes. The appropriate β-nitro alcohols were formed in good yields (up to 93%) and with up to 78% ee. The impact of the substitution of the 1,2,4-triazine ring on the nitroaldol reaction is discussed. In order to investigate the influence of the 1,2,4-triazine ring on the catalytic activity of the ligands, ligands where the 1,2,4-triazine ring was replaced by a pyridine, pyrimidine, pyrazine or pyridine N-oxide ring were synthesized and applied to asymmetric nitroaldol reactions.  相似文献   

9.
We have developed a catalytic asymmetric synthesis of (S)‐4‐ethyl‐6,6‐(ethylenedioxy)‐7,8‐dihydro‐4‐hydroxy‐1H‐pyrano[3,4‐f]indolizine‐3,10(4H)dione ( 5 a ), a synthetic intermediate for (20S)‐camptothecin analogues. A key step in this synthesis is an asymmetric α‐hydroxylation of a lactone with a vinylogous pyridone structure ( 8 a ) by using a guanidine–urea bifunctional organocatalyst. The present oxidation was successfully applied to the synthesis of C20‐modified derivatives of (+)‐C20‐desethylbenzylcamptothecin ( 13 ).  相似文献   

10.
《中国化学》2018,36(9):791-797
Transforming amino acids into novel catalysts and ligands is a remarkable subset of new catalyst development in order to imitate enzymatic efficiencies. Their ability to perform a variety of asymmetric catalytic reactions is complimented by their ready availability, rich transformations, stability and easy procedure. Herein, we focused on describing our endeavor of developing new catalysts and ligands from primary and secondary amino acids. It includes C2‐symmetric N,N'‐dioxides, guanidine‐amides, bispidine‐based diamines, and other organic salts. The account covered a brief introduction about their discovery, representative applications and related mechanisms.  相似文献   

11.
The development of highly enantioselective and general catalytic nitroaldol (Henry) reactions with ketones is a challenging yet desirable task in organic synthesis. In this communication, we report an asymmetric nitroaldol reaction with alpha-ketoesters catalyzed by a new C6'-OH cinchona alkaloid catalyst. This is the first highly efficient organocatalytic asymmetric Henry reaction with ketones. This reaction is operationally simple and affords high enantioselectivity as well as good to excellent yield for a broad range of alpha-ketoesters.  相似文献   

12.
Catalytic asymmetric Michael and Mannich‐type reactions of glycine Schiff bases with chiral two‐center organocatalysts, tartrate‐derived diammonium salts (TaDiASs), are described. On the basis of conformational studies, optimized TaDiASs with a 2,6‐disubstituted cyclohexane spiroacetal were newly designed. These TaDiASs catalyzed the asymmetric Michael and Mannich‐type reactions of glycine Schiff bases with higher enantioselectivity than previous catalysts. In the Mannich‐type reaction, aromatic N‐Boc‐protected imines (Boc=tert‐butoxycarbonyl) as well as enolizable alkyl imines were applicable. As a synthetic application of the catalytic asymmetric Mannich‐type reaction with the optimized TaDiASs, we developed a catalytic asymmetric total synthesis of (+)‐nemonapride, which is an antipsychotic agent.  相似文献   

13.
《Tetrahedron: Asymmetry》2014,25(15):1122-1128
An enantiomerically pure 1,2,4-triazine-oxazoline ligand with an indanol-derived substituent in the oxazoline ring has been synthesized using Buchwald–Hartwig amination of 3-bromo-1,2,4-triazine. The catalytic efficiency of the ligand was estimated in the asymmetric nitroaldol (Henry) reaction of nitromethane with several aromatic and aliphatic aldehydes. The appropriate nitroaldol products were formed in good yields (up to 91%) and with up to 92% ee. In order to investigate the influence of the conformational rigidity and the additional stereocenter in the oxazoline ring on the catalytic activity of the ligand, a 1,2,4-triazine-oxazoline ligand with two phenyl substituents in the oxazoline ring was synthesized and tested in the asymmetric nitroaldol reaction.  相似文献   

14.
Synthesis of asymmetric β‐nitroalcohols by the Henry reaction is one of the most exploited carbon–carbon bond‐forming reactions owing to the versatility of both functional groups for synthetic manipulation by functional group interconversion. Here we report synthesis of a series of proline‐derived compounds to study their catalytic activities for asymmetric Henry reaction in the presence of Cu(OAc)2.H2O. The proline derivative, 2‐((E)‐(((S)‐1‐benzylpyrrolidinyl)diphenylmethylimino)methyl)phenol 1 showed optimum catalytic activity. The catalytic species Cu(II)–1 complex, formed in situ, was isolated and characterized by various spectroscopic techniques and X‐ray crystallography to show a cis‐N2O2 coordination geometry. Asymmetric β‐nitroalcohols were achieved without the use of added base, unlike most of the reported protocols. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
A new approach to the utilization of highly reactive and unstable ortho‐quinone methides (o‐QMs) in catalytic asymmetric settings is presented. The enantioselective reactions are catalysed by bifunctional organocatalysts, and the o‐QM intermediates are formed in situ from 2‐sulfonylalkyl phenols through base‐promoted elimination of sulfinic acid. The use of mild Brønsted basic conditions for transiently generating o‐QMs in catalytic asymmetric processes is unprecedented, and allows engaging productively in the reactions nucleophiles such as Meldrum’s acid, malononitrile and 1,3‐dicarbonyls. The catalytic transformations give new and general entries to 3,4‐dihydrocoumarins, 4H‐chromenes and xanthenones. These frameworks are recurring structures in natural product and medicinal chemistry, as testified by the formal syntheses of (R)‐tolterodine and (S)‐4‐methoxydalbergione from the catalytic adducts.  相似文献   

16.
A highly diastereoselective (d.r. >99:1) and enantioselective (ee value up to 96 %) synthesis of trisubstituted cyclohexanols was achieved by using a one‐pot sequential organocatalysis that involved a quinidine thiourea‐catalyzed tandem Henry–Michael reaction between nitromethane and 7‐oxo‐hept‐5‐en‐1‐als followed by a tetramethyl guanidine (TMG)‐catalyzed tandem retro‐Henry–Henry reaction on the reaction products of the tandem Henry–Michael reaction. Through a mechanistic study, it has also been demonstrated that similar results may also be achieved with this one‐pot sequential organocatalysis by using the racemic Henry product as the substrate.  相似文献   

17.
The first highly efficient and practical chiral Brønsted acid catalyzed dynamic kinetic asymmetric hydroamination (DyKAH) of racemic allenes and asymmetric hydroamination of unactivated dienes with both high E/Z selectivity and enantioselectivity are described herein. The transformation proceeds through a new catalytic asymmetric model involving a highly reactive π‐allylic carbocationic intermediate, generated from racemic allenes or dienes through a proton transfer mediated by an activating/directing thiourea group. This method affords expedient access to structurally diverse enantioenriched, potentially bioactive alkenyl‐containing aza‐heterocycles and bicyclic aza‐heterocycles.  相似文献   

18.
The asymmetric catalytic addition of alcohols (phenols) to non‐activated alkenes has been realized through the cycloisomerization of 2‐allylphenols to 2‐methyl‐2,3‐dihydrobenzofurans (2‐methylcoumarans). The reaction was catalyzed by a chiral titanium–carboxylate complex at uncommonly high temperatures for asymmetric catalytic reactions. The catalyst was generated by mixing titanium isopropoxide, the chiral ligand (aS)‐1‐(2‐methoxy‐1‐naphthyl)‐2‐naphthoic acid or its derivatives, and a co‐catalytic amount of water in a ratio of 1:1:1 (5 mol % each). This homogeneous thermal catalysis (HOT‐CAT) gave various (S)‐2‐methylcoumarans with yields of up to 90 % and in up to 85 % ee at 240 °C, and in 87 % ee at 220 °C.  相似文献   

19.
The herein reported visible‐light‐activated catalytic asymmetric [3+2] photocycloadditions between cyclopropanes and alkenes or alkynes provide access to chiral cyclopentanes and cyclopentenes, respectively, in 63–99 % yields and with excellent enantioselectivities of up to >99 % ee. The reactions are catalyzed by a single bis‐cyclometalated chiral‐at‐metal rhodium complex (2–8 mol %) which after coordination to the cyclopropane generates the visible‐light‐absorbing complex, lowers the reduction potential of the cyclopropane, and provides the asymmetric induction and overall stereocontrol. Enabled by a mild single‐electron‐transfer reduction of directly photoexcited catalyst/substrate complexes, the presented transformations expand the scope of catalytic asymmetric photocycloadditions to simple mono‐acceptor‐substituted cyclopropanes affording previously inaccessible chiral cyclopentane and cyclopentene derivatives.  相似文献   

20.
Chiral N,N′‐dioxide/Zn(NTf2)2 complexes were demonstrated to be highly effective in the direct asymmetric conjugate addition of arylacetonitriles to alkylidene malonates under mild conditions. A wide range of substrates were tolerated to afford their corresponding products in moderate‐to‐good yields with high diastereoselectivities (82:18–>99:1 d.r.) and enantioselectivities (81–99 % ee). The reactions performed well, owing to the high Lewis acidity of the metal triflimidate and a ligand‐acceleration effect. The N,N′‐dioxide also benefited the deprotonation process as a Brønsted base. The catalytic reaction could be performed on the gram‐scale with retention of yield, diastereoselectivity, and enantioselectivity. The products that contained functional groups were ready for further manipulation. In addition, a possible catalytic model was proposed to explain the origin of the asymmetric induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号