首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Different cyclo‐β‐dipeptides were prepared from corresponding N‐substituted β‐alanine derivatives under mild conditions using PhPOCl2 as activating agent in benzene and Et3N as base. To evaluate β3‐substituent influence, the amino acids 7 – 26 were synthesized, and a β‐lactam formation reaction was carried out instead of cyclo‐β‐dipeptide formation. The crystal structures of three derivatives of cyclo‐β‐peptides and one β‐lactam are presented.  相似文献   

2.
A Ph3P‐catalyzed cyclization of α‐halogeno ketones 2 with dialkyl acetylenedicarboxylates (=dialkyl but‐2‐ynedioates) 3 produced halogenated α,β‐unsaturated γ‐butyrolactone derivatives 4 in good yields (Scheme 1, Table). The presence of electron‐withdrawing groups such as halogen atoms at the α‐position of the ketones was necessary in this reaction. Cyclization of α‐chloro ketones resulted in higher yields than that of the corresponding α‐bromo ketones. Dihalogeno ketones similarly afforded the expected γ‐butyrolactone derivatives in high yields.  相似文献   

3.
A series of β,γ‐unsaturated ketones were isomerized to their corresponding α,β‐unsaturated ketones by the introduction of DABCO in iPrOH at room temperature. The endo‐cyclic double bond (β,γ‐position) on ketone was rearranged to exo‐cyclic double bond (α,β‐position) under the reaction conditions.  相似文献   

4.
Aldol‐type reaction between electron deficient aldehydes and sulfonium salts to afford the corresponding β‐hydroxy α‐sulfanyl esters in moderate‐to‐good yields by using nanocrystalline MgO is described. The sulfanyl group is a useful group for further transformations in organic synthesis. Low Rfvalue isomer is anti‐configured as revealed by X‐ray diffraction study and consistent with the assignment of 1H‐NMR spectrum.  相似文献   

5.
Binary and ternary systems composed of dapsone, sulfobutylether‐β‐cyclodextrin (SBE‐β‐CD), β‐CD and egg phosphatidylcholine (EPC) were evaluated using 1D ROESY, saturation transfer difference NMR and diffusion experiments (DOSY) revealing the binary complexes Dap/β‐CD (Ka 1396 l mol?1), Dap/SBE‐β‐CD (Ka 246 l mol?1), Dap/EPC (Ka 84 l mol?1) and the ternary complex Dap/β‐CD/EPC (Ka 18 l mol?1) in which dapsone is more soluble. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
As epoxy functional group has high anticancer activity, α,β‐epoxyketones were designed and synthesized as new anticancer agents, and their structures were confirmed by UV, 1H NMR, IR, MS technigeces and elemental analysis. Their in vitro anticancer activities were evaluated by MTT method and the results showed that the compound 4c exhibited good activity with IC50 of 17.8, 22.0 and 24.1 µg/mL against A‐549, Hela and HepG2 cells, respectively. The dose of LD50 of the mice by intragastric administration was 1864.4 mg/kg. Therefore, the α,β‐epoxyketones could potentially provide as new anticancer agents.  相似文献   

7.
β‐Diimine zinc dichloride complexes [CH2{C(Me)NAr}2]ZnCl2 [Ar = Mes ( 1 ), Dipp ( 2 )] were obtained from the reactions of ZnCl2 with the corresponding β‐iminoamines [ArN(H)C(Me)CHC(Me)NAr]. Complexes 1 and 2 were characterized by multinuclear NMR (1H, 13C) and IR spectroscopy, elemental analyses as well as by single‐crystal X‐ray diffraction. The energy differences between the enamine‐imine tautomers of the β‐iminoamines were quantified by quantum chemical calculations.  相似文献   

8.
The direct and enantioselective γ‐alkylation of α‐substituted α,β‐unsaturated aldehydes proceeding under dienamine catalysis is described. We have found that the Seebach modification of the diphenyl‐prolinol silyl ether catalyst in combination with saccharin as an acidic additive promotes an SN1 alkylation pathway, while ensuring complete γ‐site selectivity and a high stereocontrol. Theoretical and spectroscopic investigations have provided insights into the conformational behavior of the covalent dienamine intermediate derived from the condensation of 2‐methylpent‐2‐enal and the chiral amine. Implications for the mechanism of stereoinduction are discussed.  相似文献   

9.
An easy and efficient method for the aminobromination of β,β‐dicyanostyrene derivatives with NBS as the aminobrominating reagent in CH3CN catalyzed by NaOAc (10 mol%) is developed. This protocol provides convenient process to convert β,β‐dicyanostyrene derivatives into the vicinal haloamines with full regiospecificity and high stereoselectivety in the ice‐water bath in air. The reaction is high efficient in yielding the corresponding aminobrominated products in excellent yields (up to 95%) under these conditions. The outcome indicated that the reaction has an electrophilic addition feature. 12 Eexamples of β,β‐dicyanostyrene derivatives have been investigated.  相似文献   

10.
Four aluminum alkyl compounds, [CH{(CH3)CN‐2,4,6‐MeC6H2}2AlMe2] ( 1 ), [CH{(CH3)CN‐2,4,6‐MeC6H2}2AlEt2] ( 2 ), [CH{(CH3)CN‐2‐iPrC6H4}2AlMe2] ( 3 ), and [CH{(CH3)CN‐2‐iPrC6H4}2AlEt2] ( 4 ), bearing β‐diketiminate ligands [CH{(Me)CN‐2,4,6‐MeC6H2}]2 (L1H) and [CH{(Me)CN‐2‐iPrC6H4}]2 (L2H) were obtained from the reactions of trimethylaluminum, triethylaluminum with the corresponding β‐diketiminate, respectively. All compounds were characterized by 1H NMR and 13C NMR spectroscopy, single‐crystal X‐ray structural analysis, and elemental analysis. Compounds 1 – 4 were found to catalyze the ring‐opening polymerization (ROP) of ε‐caprolactone (ε‐CL) with good activity.  相似文献   

11.
Annonalide (3β,20‐epoxy‐3α,16‐dihydroxy‐15‐oxo‐7‐pimaren‐19,6β‐olide, C20H26O6, 1 ) is the major (9βH)‐pimarane diterpene isolated from tubers of Cassimirella ampla, and it exhibits cytotoxic properties upon interaction with ctDNA. We have prepared new derivatives of 1 by modification of the (9βH)‐pimarane backbone and report here the semisynthesis and absolute configuration of a novel rearranged 19,20‐δ‐lactone (9βH)‐pimarane. Our approach was the reduction of the carbonyl groups of 1 with sodium borohydride, at positions C15 (no stereoselectivity) and C3 (stereoselective reduction), followed by rearrangement of the 6,19‐γ‐lactone ring into the six‐membered 19,20‐δ‐lactone ring in 4a (3β,6β,16‐trihydroxy‐7‐pimaren‐19,20β‐olide monohydrate, C20H30O6·H2O). The absolute structure of the new compound, 4a , was determined unambiguously with a Flack parameter x of −0.01 (11), supporting the stereochemistry assignment of 1 redetermined here. Besides the changes in the pattern of covalent bonds caused by reduction and lactone rearrangement, the conformation of one of the three fused cyclohexane rings is profoundly different in 4a , adopting a chair conformation instead of the boat shape found in 1 . Furthermore, the intramolecular hydrogen bond present in 1 is lost in new compound 4a , due to hydrogen bonding between the 3‐OH group and the solvent water molecule.  相似文献   

12.
To complete our panorama in structure–activity relationships (SARs) of sandalwood‐like alcohols derived from analogues of α‐campholenal (= (1R)‐2,2,3‐trimethylcyclopent‐3‐ene‐1‐acetaldehyde), we isomerized the epoxy‐isopropyl‐apopinene (?)‐ 2d to the corresponding unreported α‐campholenal analogue (+)‐ 4d (Scheme 1). Derived from the known 3‐demethyl‐α‐campholenal (+)‐ 4a , we prepared the saturated analogue (+)‐ 5a by hydrogenation, while the heterocyclic aldehyde (+)‐ 5b was obtained via a Bayer‐Villiger reaction from the known methyl ketone (+)‐ 6 . Oxidative hydroboration of the known α‐campholenal acetal (?)‐ 8b allowed, after subsequent oxidation of alcohol (+)‐ 9b to ketone (+)‐ 10 , and appropriate alkyl Grignard reaction, access to the 3,4‐disubstituted analogues (+)‐ 4f,g following dehydration and deprotection. (Scheme 2). Epoxidation of either (+)‐ 4b or its methyl ketone (+)‐ 4h , afforded stereoselectively the trans‐epoxy derivatives 11a,b , while the minor cis‐stereoisomer (+)‐ 12a was isolated by chromatography (trans/cis of the epoxy moiety relative to the C2 or C3 side chain). Alternatively, the corresponding trans‐epoxy alcohol or acetate 13a,b was obtained either by reduction/esterification from trans‐epoxy aldehyde (+)‐ 11a or by stereoselective epoxidation of the α‐campholenol (+)‐ 15a or of its acetate (?)‐ 15b , respectively. Their cis‐analogues were prepared starting from (+)‐ 12a . Either (+)‐ 4h or (?)‐ 11b , was submitted to a Bayer‐Villiger oxidation to afford acetate (?)‐ 16a . Since isomerizations of (?)‐ 16 lead preferentially to β‐campholene isomers, we followed a known procedure for the isomerization of (?)‐epoxyverbenone (?)‐ 2e to the norcampholenal analogue (+)‐ 19a . Reduction and subsequent protection afforded the silyl ether (?)‐ 19c , which was stereoselectively hydroborated under oxidative condition to afford the secondary alcohol (+)‐ 20c . Further oxidation and epimerization furnished the trans‐ketone (?)‐ 17a , a known intermediate of either (+)‐β‐necrodol (= (+)‐(1S,3S)‐2,2,3‐trimethyl‐4‐methylenecyclopentanemethanol; 17c ) or (+)‐(Z)‐lancifolol (= (1S,3R,4Z)‐2,2,3‐trimethyl‐4‐(4‐methylpent‐3‐enylidene)cyclopentanemethanol). Finally, hydrogenation of (+)‐ 4b gave the saturated cis‐aldehyde (+)‐ 21 , readily reduced to its corresponding alcohol (+)‐ 22a . Similarly, hydrogenation of β‐campholenol (= 2,3,3‐trimethylcyclopent‐1‐ene‐1‐ethanol) gave access via the cis‐alcohol rac‐ 23a , to the cis‐aldehyde rac‐ 24 .  相似文献   

13.
The [Cu(acac)2]‐catalyzed reactions of α,β‐unsaturated carboxamides with dimethyl diazomalonate yielded dihydrofuran derivatives by a 1,5‐electrocyclic reaction at C(β), and butadiene derivatives by carbene addition reaction at C(α) (Schemes 4 and 5; Table). Phenyl substituents at the N‐atom of the amides seem to be effective on the reaction pathways (Table).  相似文献   

14.
Phenanthrene derivatives were prepared by reacting an α,α‐dicyanoolefin with different α,β‐unsaturated carbonyl compounds resulting from Wittig reaction of ninhydrin and phosphanylidene or condensation of barbituric acid and an aldehyde. The easy procedure, mild and metal‐catalyst free, reaction conditions, good yields, and no need for chromatographic purifications are important features of this protocol. The structures of the product of type 3 and 5 were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS). A plausible mechanism for this type of reaction is proposed (Scheme 1).  相似文献   

15.
The racemic gluco‐configured norbornanes 4 and 16 were prepared and tested as inhibitors of β‐glucosidases. The known alcohol 5 was deprotected to provide the triol 6 . Silylation (→ 7 ), monobenzoylation (→ 8 / 9 ), and oxidation provided the regioisomeric ketones 10 and 11 . Reduction of 10 gave the desired endo‐alcohol 13 , albeit in low yield, while reduction of the isomeric ketone 11 provided mostly the altro‐configured endo‐alcohol 12 . The alcohol 13 was desilylated to 14 . Debenzoylation to 15 followed by hydrogenolytic deprotection gave the amino triol 4 that was reductively aminated to the benzylamine 16 . The amino triols 4 and 16 proved weak inhibitors of the β‐glucosidase from Caldocellum saccharolyticum ( 4 : IC50 = 5.6 mm; 16 : IC50 = 3.3 mm) and from sweet almonds ( 16 : IC50 = 5.5 mm) . A comparison of 4 with the manno‐configured norbornane 3 shows that 3 is a better inhibitor of snail β‐mannosidase than 4 is of β‐glucosidases, in keeping with earlier results suggesting that these β‐glycosidases enforce a different conformational itinerary.  相似文献   

16.
The selectivities of different β‐nucleating agents might be quite different from each other, which is important in determining the crystallization and properties of the obtained β‐isotactic polypropylene (β‐iPP). However, the relationship between molecular structure and dynamic crystallization behavior of β‐iPP nucleated by dual‐selective β‐nucleating agent (DS‐β‐NA) is still not clear. In this study, the dynamic crystallization and melting behavior of two β‐iPP with nearly same average isotacticity but different stereo‐defect distribution, nucleated by a DS‐β‐NA (N,N′‐dicyclohexyl‐2,6‐naphthalenedicarboxamide; trade name TMB‐5), were studied by differential scanning calorimetry, wide‐angle X‐ray diffraction, and scanning electronic microscopy. The results indicated that in the presence of TMB‐5, the dynamic crystallization and melting behavior of the samples are quite different because the joint effects of the dual selectivity of TMB‐5 and stereo‐defect distribution of the iPP under different cooling rates. Two important roles were observed: (i) slow cooling rate favors the formation of high β‐fraction; and (ii) high crystallization temperature favors the crystallization of α‐phase accelerated by TMB‐5. Generally, the dual selectivity of the DS‐β‐NA, the stereo‐defect distribution of iPP, and the cooling rate were important factors in determining the formation of β‐crystal. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
β‐Methyl‐α‐methylene‐γ‐butyrolactone (MMBL) was synthesized and then was polymerized in an N,N‐dimethylformamide (DMF) solution with 2,2‐azobisisobutyronitrile (AIBN) initiation. The homopolymer of MMBL was soluble in DMF and acetonitrile. MMBL was homopolymerized without competing depolymerization from 50 to 70 °C. The rate of polymerization (Rp) for MMBL followed the kinetic expression Rp = [AIBN]0.54[MMBL]1.04. The overall activation energy was calculated to be 86.9 kJ/mol, kp/kt1/2 was equal to 0.050 (where kp is the rate constant for propagation and kt is the rate constant for termination), and the rate of initiation was 2.17 × 10?8 mol L?1 s?1. The free energy of activation, the activation enthalpy, and the activation entropy were 106.0, 84.1, and 0.0658 kJ mol?1, respectively, for homopolymerization. The initiation efficiency was approximately 1. Styrene and MMBL were copolymerized in DMF solutions at 60 °C with AIBN as the initiator. The reactivity ratios (r1 = 0.22 and r2 = 0.73) for this copolymerization were calculated with the Kelen–Tudos method. The general reactivity parameter Q and the polarity parameter e for MMBL were calculated to be 1.54 and 0.55, respectively. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1759–1777, 2003  相似文献   

18.
A de novo tandem benzylic oxidative dihydroxylation of α‐vinyl‐ and α‐alkenylbenzyl alcohols has been developed to give α,β‐dihydroxypropiophenones (=2,3‐dihydroxy‐1‐phenylpropan‐1‐ones) and α,β‐dihydroxyalkyl phenones. This method was shown to be substrate‐selective and specific for the oxidation of benzylic alcohols.  相似文献   

19.
以5-雄烯二醇为原料,用微生物转化的方法合成了两个重要的神经甾体5-雄烯-3β, 7α, 17β-三醇和5-雄烯-3β, 7β, 17β-三醇。所用菌种总枝毛霉为我们自己筛选,并首次应用于5-雄烯-3β, 7α, 17β-三醇和5-雄烯-3β, 7β, 17β-三醇的合成中。  相似文献   

20.
Catalytic base‐induced decarboxylation of polyunsaturated α‐cyano‐β‐methyl acids derived from malonic acid led to the corresponding nitriles 3 (Schemes 2 and 3), 6 (Scheme 5), and 9 (Scheme 6). This decarboxylation occurred with previous deconjugation of the α,β‐alkene moiety of the α‐cyano‐β‐methyl acid, leading to an α‐cyano‐β‐methylene propanoic acid which was easily decarboxylated (see Scheme 2). β‐Methylene intermediates, in some cases, could be isolated; mechanistic pathways are proposed. The nitriles 3, 6 , and 9 were reduced to the sesquiterpene aldehydes 4 (β‐end group), 7 (φ‐end group), and 10 (ψ‐end group), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号