首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y M Choi  J Park  M C Lin 《Chemphyschem》2004,5(5):661-668
The kinetics and mechanism of the reaction of C6H5 with CH3CHO have been investigated experimentally and theoretically. The total rate constant for the reaction has been measured by means of the cavity ring-down spectrometry (CRDS) in the temperature range 299-501 K at pressures covering 20-75 Torr. The overall bimolecular rate constant can be represented by the expression k = (2.8 +/- 0.2) x 10(11) exp[-(700 +/- 30)/T] cm3 mol-1 s-1, which is slightly faster than for the analogous C6H5 + CH2O reaction determined with the same method in the same temperature range. The reaction mechanism for the C6H5 + CH3CHO reaction was also explored with quantum-chemical calculations at various hybrid density functional theories (DFTs) and using ab initio high-level composite methods. The theories predict that the reaction may occur by two hydrogen-abstraction and two addition channels with the aldehydic hydrogen-abstraction reaction being dominant. The rate constant calculated by the transition state theory for the aldehydic hydrogen-abstraction reaction is in good agreement with the experimental result after a very small adjustment of the predicted reaction barrier (+0.3 kcal mol-1). Contributions from other product channels are negligible under our experimental conditions. For combustion applications, we have calculated the rate constants for key product channels in the temperature range of 298-2500 K under atmospheric-pressure conditions; they can be represented by the following expressions in units of cm 3mol-1 s-1: k1,cho = 8.8 x 10(3)T2.6 exp(-90/T), k2,ch3 = 6.0 x 10(1)T3.3 exp(-950/T), k3a(C6H5COCH3 + H) = 4.2 x 10(5)T0.6 exp(-410/T) and k3b(C6H5CHO + CH3) = 6.6 x 10(9)T-0.5 exp(-310/T).  相似文献   

2.
Intriguing inactivation : Calculations suggest that the ability of relatively high‐energy radical intermediates to inactivate glycerol dehydratase (GDH) may reflect a general and hitherto unidentified inactivation mechanism in the reaction of coenzyme B12‐dependent enzymes and 3‐unsaturated 1,2‐diols (see scheme; AdoCbl: adenosylcobalamin or coenzyme B12).

  相似文献   


3.
4.
5.
6.
7.
Cysteine oxidation by HO(.) was studied at a high level of ab initio theory in both gas phase and aqueous solution. Potential energy surface scans in the gas phase performed for the model system methanethiol+HO(.) indicate that the reactants can form two intermediate states: a sulfur-oxygen adduct and a hydrogen bound reactant complex. However these states appear to play a minor role in the reaction mechanism as long as they are fast dissociating states. Thus the main reaction channel predicted at the QCISD(T)/6-311+G(2df,2pd) level of theory is the direct hydrogen atom abstraction. The reaction mechanism is not perturbed by solvation which was found to induce only small variations in the Gibbs free energy of different reactant configurations. The larger size reactant system cysteine+HO* was treated by the integrated molecular orbital+molecular orbital (IMOMO) hybrid method mixing the QCISD(T)/6-311+G(2df,2pd) and the UMP2/6-311+G(d,p) levels of theory. The calculated potential energy, enthalpy, and Gibbs free energy barriers are slightly different from those of methanethiol. The method gave a rate constant for cysteine oxidation in aqueous solution, k=2.4 x 10(9) mol(-1) dm(3) s(-1), which is in good agreement with the experimental rate constant. Further analysis showed that the reaction is not very sensitive to hydrogen bonding and electrical polarity of the molecular environment.  相似文献   

8.
The UV photodissociation (<5 eV) of diiodomethane (CH(2)I(2)) is investigated by spin-orbit ab initio calculations. The experimentally observed photodissociation channels in the gas and condensed phases are clearly assigned by multi-state second-order multiconfigurational perturbation theory in conjunction with spin-orbit interaction through complete active space-state interaction potential energy curves. The calculated results indicate that the fast dissociations of the first two singlet states of CH(2)I(2) and CH(2)I--I lead to geminate-radical products, CH(2)I (.)+I((2)P(3/2)) or CH(2)I (.)+ I*((2)P(1/2)). The recombination process from CH(2)I--I to CH(2)I(2) is explained by an isomerization process and a secondary photodissociation reaction of CH(2)I--I. Finally, the study reveals that spin-orbits effects are significant in the quantitative analysis of the electronic spectrum of the CH(2)I--I species.  相似文献   

9.
The radical-radical reaction mechanisms and dynamics of ground-state atomic oxygen [O(3P)] with the saturated tert-butyl radical (t-C4H9) are investigated using the density functional method and the complete basis set model. Two distinctive reaction pathways are predicted to be in competition: addition and abstraction. The barrierless addition of O(3P) to t-C4H9 leads to the formation of an energy-rich intermediate (OC4H9) on the lowest doublet potential energy surface, which undergoes subsequent direct elimination or isomerization-elimination leading to various products: C3H6O + CH3, iso-C4H8O + H, C3H7O + CH2, and iso-C4H8 + OH. The respective microscopic reaction processes examined with the aid of statistical calculations, predict that the major addition pathway is the formation of acetone (C3H6O) + CH3 through a low-barrier, single-step cleavage. For the direct, barrierless H-atom abstraction mechanism producing iso-C4H8 (isobutene) + OH, which was recently reported in gas-phase crossed-beam investigations, the reaction is described in terms of both an abstraction process (major) and a short-lived addition dynamic complex (minor).  相似文献   

10.
《Chemphyschem》2003,4(8):843-847
The atmospheric reaction (1) OH + O3→HO2 + O2 was investigated theoretically by using MP2, QCISD, QCISD(T), and CCSD(T) methods with various basis sets. At the highest level of theory, namely, QCISD, the reaction is direct, with only one transition state between reactants and products. However, at the MP2 level, the reaction proceeds through a two‐step mechanism and shows two transition states, TS1 and TS2 , separated by an intermediate, Int . The different methodologies employed in this paper consistently predict the barrier height of reaction (1) to be within the range 2.16–5.11 kcal mol?1, somewhat higher than the experimental value of 2.0 kcal mol?1.  相似文献   

11.
N,C-chelate organoboron compounds are widely employed as photoresponsive and optoelectronic materials due to their efficient photochromic reactivity. It was found in experiments that two diphenyl-substituted organoboron compounds, namely B(ppy)Ph2 (ppy=2-phenylpyridyl) and B(iba)Ph2 (iba=N-isopropylbenzylideneamine), show distinct photochemical reactivity. B(ppy)Ph2 is inert on irradiation, whereas B(iba)Ph2 undergoes photoinduced transformations, yielding BN-cyclohepta-1,3,5-triene via a borirane intermediate. In this work, the complete active space self-consistent field and its second-order perturbation (CASPT2//CASSCF) methods were used to investigate the photoinduced reaction mechanisms of B(ppy)Ph2 and B(iba)Ph2. The calculations showed that the two compounds isomerize to borirane in the same way by passing a transition state in the S1 state and a conical intersection between the S1 and S0 states. The energy barriers in the S1 state of 0.54 and 0.26 eV for B(ppy)Ph2 and B(iba)Ph2, respectively, were explained by analyzing the charge distributions of minima in S0 and S1 states. The results provide helpful insights into the excited-state dynamics of organoboron compounds, which could assist in rational design of boron-based photoresponsive materials.  相似文献   

12.
High‐level ab initio and Born–Oppenheimer molecular dynamic calculations have been carried out on a series of hydroperoxyalkyl (α‐QOOH) radicals with the aim of investigating the stability and unimolecular decomposition mechanism into QO+OH of these species. Dissociation was shown to take place through rotation of the C?O(OH) bond rather than through elongation of the CO?OH bond. Through the C?O(OH) rotation, the unpaired electron of the radical overlaps with the electron density on the O?OH bond, and from this overlap the C=O π bond forms and the O?OH bond breaks spontaneously. The CH2OOH, CH(CH3)OOH, CH(OH)OOH, and α‐hydroperoxycycloheptadienyl radical were found to decompose spontaneously, but the CH(CHO)OOH has a decomposition energy barrier of 5.95 kcal mol?1 owing to its steric and electronic features. The systems studied in this work provide the first insights into how structural and electronic effects govern the stabilizing influence on elusive α‐QOOH radicals.  相似文献   

13.
During the last decade, experimental and theoretical studies on the unimolecular decomposition of cumulenes (H2CnH2) from propadiene (H2CCCH2) to hexapentaene (H2CCCCCCH2) have received considerable attention due to the importance of these carbon‐bearing molecules in combustion flames, chemical vapor deposition processes, atmospheric chemistry, and the chemistry of the interstellar medium. Cumulenes and their substituted counterparts also have significant technical potential as elements for molecular machines (nanomechanics), molecular wires (nano‐electronics), nonlinear optics, and molecular sensors. In this review, we present a systematic overview of the stability, formation, and unimolecular decomposition of chemically, photo‐chemically, and thermally activated small to medium‐sized cumulenes in extreme environments. By concentrating on reactions under gas phase thermal conditions (pyrolysis) and on molecular beam experiments conducted under single‐collision conditions (crossed beam and photodissociation studies), a comprehensive picture on the unimolecular decomposition dynamics of cumulenes transpires.  相似文献   

14.
《Chemphyschem》2003,4(12):1308-1315
The low‐energy regions of the singlet→singlet, singlet→triplet, and triplet→triplet electronic spectra of 2,2′‐bithiophene are studied using multiconfigurational second‐order perturbation theory (CASPT2) and extended atomic natural orbitals (ANO) basis sets. The computed vertical, adiabatic, and emission transition energies are in agreement with the available experimental data. The two lowest singlet excited states, 11Bu and 21Bu, are computed to be degenerate, a novel feature of the system to be borne in mind during the rationalization of its photophysics. As regards the observed high triplet quantum yield of the molecule, it is concluded that the triplet states 23Ag and 23Bu, separated about 0.4 eV from the two lowest singlet excited states, can be populated by intersystem crossing from nonplanar singlet states.  相似文献   

15.
16.
Competition experiments have been performed to determine the relative reactivities of substituted bromobenzenes and of different arylzinc reagents in the [Pd(PPh3)4]‐catalyzed Negishi cross‐coupling reaction in THF at 25 °C. The cross‐coupling reactions are accelerated by electron acceptors in the bromobenzenes, the effect of which increases in the order ortho <meta <para. On the other hand, electron acceptors in the arylzinc halides diminish the reaction rates. Hammett correlations show that substituent variations in the bromobenzenes (ρ=+2.5) have a larger effect than substituent variations in the arylzinc halides (ρ=?0.98).  相似文献   

17.
《Chemphyschem》2003,4(4):366-372
The atmospheric reaction NH2+O3→H2NO+O2 has been investigated theoretically by using MP2, QCISD, QCISD(T), CCSD(T), CASSCF, and CASPT2 methods with various basis sets. At the MP2 level of theory, the hypersurface of the potential energy (HPES) shows a two step reaction mechanism. Therefore, the mechanism proceeds along two transition states (TS1 and TS2), separated by an intermediate designated as Int. However, when the single‐reference higher correlated QCISD and the multiconfigurational CASSCF methodologies have been employed, the minimum structure Int and TS2 are not found on the HPES, which thus confirms a direct reaction mechanism. Single‐reference high correlated and multiconfigurational methods consistently predict the barrier height of the reaction to be within the range of 3.9 to 6.6 kcal mol?1, which is somewhat higher than the experimental value. 1 The calculated reaction enthalpy is ?67.7 kcal mol?1.  相似文献   

18.
The g matrices (g tensors) of various phosphinyl radicals (R2P.) were calculated using the DFT and multireference configuration interaction (MRCI) methods. The g matrices were distinctly dependent on the molecular structure of the radical. To thoroughly examine this dependence, the contributions from individual atoms and excited states were calculated. The former revealed the gain from the phosphorus atom to be preeminent unless P?O or P?S bonds are present in the radical molecule. The contributions owing to excited states arising from electronic transitions between doubly occupied molecular orbitals and the SOMO were clearly positive, as in the case of semiquinone and niroxide radicals. The transitions from the phosphorus lone pair were of paramount importance. Surprisingly, unlike for semiquinones and nitroxides, a significant negative contribution was observed from excitations from the SOMO to unoccupied molecular orbitals. For radicals with P?O bonds, this contribution to the g2 component was dominant.  相似文献   

19.
20.
The biological dehalogenation of fluoroacetate carried out by fluoroacetate dehalogenase is discussed by using quantum mechanical/molecular mechanical (QM/MM) calculations for a whole‐enzyme model of 10 800 atoms. Substrate fluoroacetate is anchored by a hydrogen‐bonding network with water molecules and the surrounding amino acid residues of Arg105, Arg108, His149, Trp150, and Tyr212 in the active site in a similar way to haloalkane dehalogenase. Asp104 is likely to act as a nucleophile to attack the α‐carbon of fluoroacetate, resulting in the formation of an ester intermediate, which is subsequently hydrolyzed by the nucleophilic attack of a water molecule to the carbonyl carbon atom. The cleavage of the strong C? F bond is greatly facilitated by the hydrogen‐bonding interactions between the leaving fluorine atom and the three amino acid residues of His149, Trp150, and Tyr212. The hydrolysis of the ester intermediate is initiated by a proton transfer from the water molecule to His271 and by the simultaneous nucleophilic attack of the water molecule. The transition state and produced tetrahedral intermediate are stabilized by Asp128 and the oxyanion hole composed of Phe34 and Arg105.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号