首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
《Electroanalysis》2006,18(17):1727-1729
A new polyvinyl chloride (PVC)/tetrathiafulvalene‐tetracyanoquinodimethane (TTF‐TCNQ) composite electrode was prepared and tested for electroanalytical performance. Different PVC/TTF‐TCNQ–graphite proportions were used in order to obtain the best possible detector for accommodation in a wall‐jet electrochemical cell of use in flow injection analysis. A PVC/TTF‐TCNQ w/w ratio of 1/10 provided the best results in terms of sensitivity, coefficients of variation and mechanical resistance. The voltammetric and flow‐injection amperometric detection responses of the electrode to ascorbic acid (AA) were measured and compared with those of a PVC–graphite electrode. The resulting electrode provided good electrode kinetics with a low background current and a relatively reproducible signal. In addition, the electrode can be readily prepared and its surface readily renewed.  相似文献   

2.
《Electroanalysis》2003,15(13):1115-1119
A novel electrocatalytic biosensor for glucose is reported that incorporate encapsulation of tetrathifulvalene‐tetracyanoquinodimethane (TTF‐TCNQ) functionalized organically modified sol gel glass (ormosil). The new ormosil is made using palladium‐linked glycidoxypropyltrimethoxysilane precursor, trimethoxysilane, HCl and TTF‐TCNQ powder at 25 °C. The ormosil is converted into fine powder and incorporated within graphite paste electrode along with glucose oxidase. The bioelectrochemistry of GOD and TTF‐TCNQ functionalized ormosil is examined based on cyclic voltammetry and amperometric measurements. A large electrocatalytic current to the order of 8000 μA/cm2 is recorded on the addition of 300 mM glucose. Typical responses of new biosensor are reported. The sensitivity of glucose analysis is found relatively much better as compared to earlier reported glucose biosensors. The role of palladium and TTF‐TCNQ introduction within ormosil and its advantages on bioelectrocatalysis are discussed.  相似文献   

3.
《Electroanalysis》2006,18(11):1068-1074
A TTF‐TCNQ/PVC composite electrode is proposed as a voltammetric cation and anion sensor. The electrode relies on the principle that, during redox processes involving the TCNQ0/? couple for cations and the TTF+/0 couple for anions, electrolyte ions are included into lattice sites in the charge neutralization process. This voltammetric ion‐sensor provides results that are similar to those of sensors based on two electrodes (viz. one modified with TCNQ for cations and another modified with TTF for anions) but with some practical advantages over them.  相似文献   

4.
We herein report on the electrocatalytic activity towards the oxidation of NADH of a PVC/TTF‐TCNQ composite electrode modified with gold nanoparticles. This electrocatalytic property allows proposing this system as a new alternative for amperometric determination of NADH, without need to add another mediator. The sensor shows a linear response to NADH over a concentration range from 5.0×10?6 M up to 5.0×10?4 M, with a sensitivity of 11.22±0.5 mA M?1 and a detection limit (S/N=3) of 4.0×10?6 M for measurements in batch and similar data in FIA.  相似文献   

5.
A PVC/TTF‐TCNQ composite electrode has been employed as detector in a flow injection system. The proposed method allows the simultaneous detection of ascorbic acid (AA) and uric acid (UA) in mixtures by using a FIA system in a simple manner, without pre‐treatment or modified electrode. This method is based on the amperometric determination of (a) ascorbic acid at 0.15 V and (b) both analytes at 0.35 V, being the response linear in the range 1×10?2–4×10?4 M for both analytes with detection limits (S/N=3) of 1.2×10?4 M and 8.1×10?5 M for AA and UA, respectively.  相似文献   

6.
A nanocage coupling effect from a redox RuII‐PdII metal–organic cage (MOC‐16) is demonstrated for efficient photochemical H2 production by virtue of redox–guest modulation of the photo‐induced electron transfer (PET) process. Through coupling with photoredox cycle of MOC‐16, tetrathiafulvalene (TTF) guests act as electron relay mediator to improve the overall electron transfer efficiency in the host–guest system in a long‐time scale, leading to significant promotion of visible‐light driven H2 evolution. By contrast, the presence of larger TTF‐derivatives in bulk solution without host–guest interactions results in interference with PET process of MOC‐16, leading to inefficient H2 evolution. Such interaction provides an example to understand the interplay between the redox‐active nanocage and guest for optimization of redox events and photocatalytic activities in a confined chemical nanoenvironment.  相似文献   

7.
Herein we demonstrate the synthesis of a helicene‐based imidazolium salt. The salt was prepared by starting from racemic 2‐methyl[6]helicene, which undergoes radical bromination to yield 2‐(bromomethyl)[6]helicene. Subsequent treatment with 1‐butylimidazole leads to the corresponding salt 1‐butyl‐3‐(2‐methyl[6]helicenyl)‐imidazolium bromide. The prepared salt was subsequently characterized by using NMR spectroscopy and X‐ray analysis, various optical spectrometric techniques, and computational chemistry tools. Finally, the imidazolium salt was immobilized onto a SiO2 substrate as a crystalline or amorphous deposit. The deposited layers were used for the development of organic molecular semiconductor devices and the construction of a fully reversible humidity sensor.  相似文献   

8.
Highly conductive poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) films as transparent electrodes for organic light‐emitting diodes (OLEDs) are doped with a new solvent 1,3‐dimethyl‐2‐imidazolidinone (DMI) and are optimized using solvent post‐treatment. The DMI doped PEDOT:PSS films show significantly enhanced conductivities up to 812.1 S cm−1. The sheet resistance of the PEDOT:PSS films doped with DMI is further reduced by various solvent post‐treatment. The effect of solvent post‐treatment on DMI doped PEDOT:PSS films is investigated and is shown to reduce insulating PSS in the conductive films. The solvent posttreated PEDOT:PSS films are successfully employed as transparent electrodes in white OLEDs. It is shown that the efficiency of OLEDs with the optimized DMI doped PEDOT:PSS films is higher than that of reference OLEDs doped with a conventional solvent (ethylene glycol). The results present that the optimized PEDOT:PSS films with the new solvent of DMI can be a promising transparent electrode for low‐cost, efficient ITO‐free white OLEDs.

  相似文献   


9.
10.
The mediation of electron‐transfer by oxo‐bridged dinuclear ruthenium ammine [(bpy)2(NH3)RuIII(µ‐O)RuIII(NH3)(bpy)2]4+ for the oxidation of glucose was investigated by cyclic voltammetry. These ruthenium (III) complexes exhibit appropriate redox potentials of 0.131–0.09 V vs. SCE to act as electron‐transfer mediators. The plot of anodic current vs. the glucose concentration was linear in the concentration range between 2.52×10?5 and 1.00×10?4 mol L?1. Moreover, the apparent Michaelis‐Menten kinetic (KMapp) and the catalytic (Kcat) constants were 8.757×10?6 mol L?1 and 1,956 s?1, respectively, demonstrating the efficiency of the ruthenium dinuclear oxo‐complex [(bpy)2(NH3)RuIII(µ‐O)RuIII(NH3)(bpy)2]4+ as mediator of redox electron‐transfer.  相似文献   

11.
12.
A novel mononuclear cobalt complex 1 was synthesized by treatment of CoCl2·6H2O with a COOMe functionalized TPA ligand (TPA=tris(2‐pyridylmethyl)amine). In a basic borate buffer, 1 acts as an efficient catalyst for water oxidation, which is confirmed by an extinct catalytic oxidant wave in electrochemistry. Visible light‐driven water oxidation has been achieved by 1 with a TON of 127.7 and a TOF of 3.8 s?1 respectively in a homogeneous system. In comparison to the reference RC with naked TPA, the higher efficiency of 1 evidences COOMe on ligand can improve the catalytic efficiency, leading to an effective pathway towards construction of a robust and stable artificial photosynthesis system.  相似文献   

13.
《Electroanalysis》2006,18(21):2049-2054
An efficient enzyme immobilization technique is described in which well‐organized collagen peptide monolayers are used as a scaffold upon which horseradish peroxidase is anchored on gold electrode surfaces. The resulting electrode presents reproducible amperometric responses at an applied potential of ?0.1 V with a range of linearity for peroxides. These results suggest that triple helical collagen can be used for specific immobilization of HRP with advantages of low price, simplicity and biocompatibility. The results are significant for the control of biomolecular self‐assembly in the intrinsic electric devices.  相似文献   

14.
With the ever‐increasing concerns on environmental pollution and energy crisis, it is of great urgency to develop high‐performance photocatalyst to eliminate organic pollutants from wastewater and produce hydrogen via water splitting. Herein, a polypyridyl‐based mixed covalent CuI/II complex with triangular {Cu3} and rhombic {Cu2Cl4} subunits alternately extended by mixed SCN and Cl heterobridges [Cu4(DNP)(SCN)Cl4]n ( 1 ) [DNP = 2,6‐bis(1,8‐naphthyridine‐2‐yl)pyridine] was solvothermally synthesized and employed as a dual‐functional co‐photocatalyst. Resulting from a narrowed band‐gap of 1.07 eV with suitable redox potential and unsaturated CuI/II sites, the complex together with H2O2 can effectively degrade Rhodamine B and methyl orange up to 87.4 and 88.2 %, respectively. Meanwhile, the complex mixed with H2PtCl6 can also accelerate the photocatalytic water splitting in the absence of a photosensitizer with the hydrogen production rate of 27.5 μmol · g–1 · h–1. These interesting findings may provide informative hints for the design of the multiple responsive photocatalysts.  相似文献   

15.
本文报道了一种以牛磺酸双核铜络合物为中性载体的硫氰酸根PVC膜电极。该电极对硫氰酸根有良好的电位响应并呈现出anti-Hofmeister行为,其选择性顺序SCN->I->ClO4->Sal->NO3-> NO2-> Br- > Cl- > SO3-> SO4 2-。在20℃ pH 5.0的磷酸缓冲溶液中,其线性范围为1.0´10 -1~ 1.0´10-6mol×L-1,检测线为8.0×10 -7mol•L-1,斜率为 -56.5 mV/pcSCN-。紫外、红外和交流阻抗研究表明电极的高选择性与载体的立体结构和分析物与中心金属离子的作用相关。将该电极用于废水和人体尿液中硫氰酸根的测定,获得了较满意的结果。  相似文献   

16.
Both silica glass materials singly doped with rare earth organic complex and co-doped with Al^3 were prepared by in situ sol-gel method respectively. XRD and SEM measurements were performed to verify the non-crystalline structure of the glass. The excitation spectra, emission spectra and IR spectra were measured to analyze the influence of the glass contents on the structure of the glass and the energy level of the doped Eu(IH) ions. The effect of Al^3 on the photoluminescence properties of rare earth organic complex in silica glass was investigated. The IR spectra indicated that the in situ synthesized europium complex molecule was confined to the micropores of the host and the vibration of the ligands was frozen. When Al2O3 was doped into the silica host gel, the rare earth ions in the silica network were wrapped up and dispersed by Al2O3, so the distribution of Eu(Ⅲ) complex in the host was morehomogeneous, and the luminescence intensity of ^5D0-^7F2 transition emission of the Eu^3 ions was improved. The results showed that an appropriate amount of Al^3 added to the gel glass improved the emission intensity of the complex in the silica glass, and when the content of Al2O3 reached 4 mol%, the maximum emission intensity could be obtained compared with that of other samples containing different Al2O3 contents.  相似文献   

17.
《中国化学会会志》2017,64(12):1496-1502
By the four‐component condensation reaction of benzaldehyde with ethyl acetoacetate, malononitrile, and hydrazine hydrate using FeCl2, a pyranopyrazole derivative was synthesized and then reacted with salicylaldehyde to give nano‐Fe‐[phenyl‐salicylaldimine‐methylpyranopyrazole]Cl2 (nano‐[Fe‐PSMP]Cl2). The prepared nano‐Schiff base complex was successfully used as an efficient catalyst for the synthesis of hexahydroquinolines.  相似文献   

18.
Self‐doping ionene polymers were efficiently synthesized by reacting functional naphthalene diimide (NDI) with 1,3‐dibromopropane ( NDI‐NI ) or trans‐1,4‐dibromo‐2‐butene ( NDI‐CI ) via quaternization polymerization. These NDI‐based ionene polymers are universal interlayers with random molecular orientation, boosting the efficiencies of fullerene‐based, non‐fullerene‐based, and ternary organic solar cells (OSCs) over a wide range of interlayer thicknesses, with a maximum efficiency of 16.9 %. NDI‐NI showed a higher interfacial dipole (Δ), conductivity, and electron mobility than NDI‐CI , affording solar cells with higher efficiencies. These polymers proved to efficiently lower the work function (WF) of air‐stable metals and optimize the contact between metal electrode and organic semiconductor, highlighting their power to overcome energy barriers of electron injection and extraction processes for efficient organic electronics.  相似文献   

19.
The self‐assembly of organic TCNQF.? radicals (2‐fluoro‐7,7,8,8‐tetracyano‐p‐quinodimethane) and the anisotropic [Tb(valpn)Cu]3+ dinuclear cations produced a single‐chain magnet (SCM) involving stacking interactions of TCNQF.? radicals (H2valpn is the Schiff base from the condensation of o‐vanillin with 1,3‐diaminopropane). Static and dynamic magnetic characterizations reveal that the effective energy barrier for the reversal of the magnetization in this hetero‐tri‐spin SCM is significantly larger than the barrier of the isolated single‐molecule magnet based on the {TbCu} dinuclear core.  相似文献   

20.
Lighting one by one: The electroluminescence (EL) from single molecules of a red phosphorescent iridium complex dispersed in a hole‐transporting polymer matrix is studied. The single‐molecule EL dynamics is determined by local structural inhomogeneities in the matrix polymer (see picture).

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号