首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
《Electroanalysis》2004,16(15):1271-1278
Four kinds of xanthine oxidase (XOD) based amperometric biosensors were fabricated and their analytical performances were compared. Polypyrrole (PPY)/XOD biosensor was constructed by electrochemical oxidation of pyrrole in the solution containing xanthine oxidase and pyrrole in this paper. Colloidal Au was then immobilized on the biosensor. On the other hand, electron mediator, Prussian Blue (PB), was deposited on the electrode before the immobilization of PPY/XOD to enhance electron‐transfer rate and current response. The results showed that PPY/XOD, PPY/XOD/Au‐colloid, PB/PPY/XOD and PB/PPY/XOD/Au‐colloid biosensors exhibit good response to xanthine in 1×10?6 M and 2×10?5 M and Michaelis‐Menten constants (Km) of these biosensors were 242.2, 113.4, 144.5, 43.2 μmol?L?1, respectively. The dependence of current responses with applied voltages was discussed, and different mechanisms of these biosensors were discussed. It has been found that colloidal Au can enhance the current response at the same concentration of xanthine solution and decrease the energy‐barrier of electron‐transfer reaction on the electrode.  相似文献   

2.
Here we report the first mediated pain free microneedle‐based biosensor array for the continuous and simultaneous monitoring of lactate and glucose in artificial interstitial fluid (ISF). The gold surface of the microneedles has been modified by electrodeposition of Au‐multiwalled carbon nanotubes (MWCNTs) and successively by electropolymerization of the redox mediator, methylene blue (MB). Functionalization of the Au‐MWCNTs/polyMB platform with the lactate oxidase (LOX) enzyme (working electrode 1) and with the FAD‐Glucose dehydrogenase (FADGDH) enzyme (working electrode 2) enabled the continuous monitoring of lactate and glucose in the artificial ISF. The lactate biosensor exhibited a high sensitivity (797.4±38.1 μA cm?2 mM?1), a good linear range (10–100 μM) with a detection limit of 3 μM. The performance of the glucose biosensor were also good with a sensitivity of 405.2±24.1 μA cm?2 mM?1, a linear range between 0.05 and 5 mM and a detection limit of 7 μM. The biosensor array was tested to detect the amount of lactate generated after 100 minutes of cycling exercise (12 mM) and of glucose after a normal meal for a healthy patient (10 mM). The results reveal that the new microneedles‐based biosensor array seems to be a promising tool for the development of real‐time wearable devices with a variety of sport medicine and clinical care applications.  相似文献   

3.
An electrochemical DNA sensing film was constructed based on the multilayers comprising of poly‐L ‐lysine (pLys) and Au‐carbon nanotube (Au‐CNT) hybrid. A precursor film of mercaptopropionic acid (MPA) was firstly self‐assembled on the Au electrode surface. pLys and Au‐CNT hybrid layer‐by‐layer assembly films were fabricated by alternately immersing the MPA‐modified electrode into the pLys solution and Au‐CNT hybrid solution. Cyclic voltammetry was used to monitor the consecutive growth of the multilayer films by utilizing [Fe(CN)6]3?/4? and [Co(phen)3]3+/2+ as the redox indicators. The outer layer of the multilayer film was the positively charged pLys, on which the DNA probe was easily linked due to the strong electrostatic affinity. The hybridization detection of DNA was accomplished by using methylene blue (MB) as the indicator, which possesses different affinities to dsDNA and ssDNA. Differential pulse voltammetry was employed to record the signal response of MB and determine the amount of the target DNA sequence. The established biosensor has high sensitivity, a relatively wide linear range from 1.0×10?10 mol/L to 1.0×10?6 mol/L and the ability to discriminate the fully complementary target DNA from single or double base‐mismatched DNA. The sequence‐specific DNA related to phosphinothricin acetyltransferase gene from the transgenically modified plants was successfully detected.  相似文献   

4.
《Electroanalysis》2004,16(17):1385-1392
A bienzyme biosensor in which the enzymes β‐galactosidase (β‐Gal), fructose dehydrogenase (FDH), and the mediator tetrathiafulvalene (TTF) were coimmobilized by cross‐linking with glutaraldehyde atop a 3‐mercaptopropionic acid (MPA) self‐assembled monolayer on a gold disk electrode, is reported. The working conditions selected were Eapp=+0.10 V and (25±1) °C. The useful lifetime of one single TTF‐β‐Gal‐FDH‐MPA‐AuE was surprisingly long, 81 days. A linear calibration plot was obtained for lactulose over the 3.0×10?5–1.0×10?3 mol L?1 concentration range, with a limit of detection of 9.6×10?6 mol L?1. The effect of potential interferents (lactose, glucose, galactose, sucrose, and ascorbic acid) on the biosensor response was evaluated. The behavior of the SAM‐based biosensor in flow‐injection systems in connection with amperometric detection was tested. The analytical usefulness of the biosensor was evaluated by determining lactulose in a pharmaceutical preparation containing a high lactulose concentration, and in different types of milk. Finally, the analytical characteristics of the TTF‐β‐Gal‐FDH‐MPA‐AuE are critically compared with those reported for other recent enzymatic determinations of lactulose.  相似文献   

5.
《Electroanalysis》2003,15(12):1031-1037
A cholesterol biosensors fabricated by immobilization of cholesterol oxidase (ChOx) in a layer of silicic sol‐gel matrix on the top of a Prussian Blue‐modified glassy carbon electrode was prepared. It is based on the detection of hydrogen peroxide produced by ChOx at ?0.05 V. The half‐lifetime of the biosensor is about 35 days. Cholesterol can be determined in the concentration range of 1×10?6?8×10?5 mol/L with a detection limit of 1.2×10?7 mol/L. Normal interfering compounds, such as ascorbic acid and uric acid do not affect the determination. The high sensitivity and outstanding selectivity are attributed to the Prussian Blue film modified on the sensor.  相似文献   

6.
A comparison of the analytical characteristics of two tyramine biosensors, based on graphene oxide (GRO) and polyvinylferrocene (PVF) modified screen‐printed carbon electrodes (SPCE), is reported. Diamine oxidase (DAOx) or monoamine oxidase (MAOx) was immobilized onto the PVF/GRO modified SPCE to fabricate the biosensors. Surface characteristics and electrochemical behaviour of the modified SPCEs were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM), energy dispersive X‐ray spectroscopy (EDX) and cyclic voltammetry (CV). Electrode surface composition and experimental variables such as pH and working potential were optimized in order to ensure a high performance. Under optimum experimental conditions, both DAOx/PVF/GRO/SPCE and MAOx/PVF/GRO/SPCE biosensors exhibited wide linear dynamic ranges for tyramine from 9.9×10?7 to 1.2×10?4 M and from 9.9×10?7 to 1.1×10?4 M, respectively. MAOx/PVF/GRO/SPCE biosensor showed higher sensitivity (11.98 μA mM?1) for tyramine determination than the DAOx/PVF/GRO/SPCE biosensor (7.99 μA mM?1). The substrate specifity of the biosensors to other biogenic amines namely histamine, putrescine, spermine, spermidine, tryptamine, β‐phenylethylamine and cadaverine was also investigated. The developed biosensors were successfully used for tyramine determination in cheese sample.  相似文献   

7.
唐明宇袁若  柴雅琴 《中国化学》2006,24(11):1575-1580
The third generation amperometric biosensor for the determination of hydrogen peroxide (H2O2) has been described. For the fabrication of biosensor, o-aminobenzoic acid (oABA) was first electropolymerized on the surface of platinum (Pt) electrode as an electrostatic repulsion layer to reject interferences. Horseradish peroxidase (HRP) absorbed by nano-scaled particulate gold (nano-Au) was immobilized on the electrode modified with polymerized o-aminobenzoic acid (poABA) with L-cysteine as a linker to prepare a biosensor for the detection of H2O2. Amperometric detection of H2O2 was realized at a potential of +20 mV versus SCE. The resulting biosensor exhibited fast response, excellent reproducibility and sensibility, expanded linear range and low interferences. Temperature and pH dependence and stability of the sensor were investigated. The optimal sensor gave a linear response in the range of 2.99×10^-6 to 3.55×10^-3 mol·L^-1 to H2O2 with a sensibility of 0.0177 A·L^-1·mol^-1 and a detection limit (S/N = 3) of 4.3×10^-7 mol·L^-1. The biosensor demonstrated a 95% response within less than 10 s.  相似文献   

8.
《Electroanalysis》2004,16(23):1992-1998
A carbon nanotubes‐based amperometric cholesterol biosensor has been fabricated through layer‐by‐layer (LBL) deposition of a cationic polyelectrolyte (PDDA, poly(diallyldimethylammonium chloride)) and cholesterol oxidase (ChOx) on multi‐walled carbon nanotubes (MWNTs)‐modified gold electrode, followed by electrochemical generation of a nonconducting poly(o‐phenylenediamine) (PPD) film as the protective coating. Electrochemical impedance measurements have shown that PDDA/ChOx multilayer film could be formed uniformly on MWNTs‐modified gold electrode. Due to the strong electrocatalytic properties of MWNTs toward H2O2 and the low permeability of PPD film for electroacitve species, such as ascorbic acid, uric acid and acetaminophen, the biosensor has shown high sensitivity and good anti‐interferent ability in the detection of cholesterol. The effect of the pH value of the detection solution on the response of the biosensor was also investigated. A linear range up to 6.0 mM has been observed for the biosensor with a detection limit of 0.2 mM. The apparent Michaelis‐Menten constant and the maximum response current density were calculated to be 7.17 mM and 7.32 μA cm?2, respectively.  相似文献   

9.
An electrically neutral cobalt complex, [Co(GA)2(phen)] (GA=glycollic acid, phen=1,10‐phenathroline), was synthesized and its interactions with double‐stranded DNA (dsDNA) were studied by using electrochemical methods on a glassy carbon electrode (GCE). We found that [Co(GA)2(phen)] could intercalate into the DNA duplex through the planar phen ligand with a high binding constant of 6.2(±0.2)×105 M ?1. Surface studies showed that the cobalt complex could electrochemically accumulate within the modified dsDNA layer, rather than within the single‐stranded DNA (ssDNA) layer. Based on this feature, the complex was applied as a redox‐active hybridization indicator to detect 18‐base oligonucleotides from the CaMV35S promoter gene. This biosensor presented a very low background signal during hybridization detection and could realize the detection over a wide kinetic range from 1.0×10?14 M to 1.0×10?8 M , with a low detection limit of 2.0 fM towards the target sequences. The hybridization selectivity experiments further revealed that the complementary sequence, the one‐base‐mismatched sequence, and the non‐complementary sequence could be well‐distinguished by the cobalt‐complex‐based biosensor.  相似文献   

10.
Development of electrochemical DNA hybridization biosensors based on carbon paste electrode (CPE) and gold nanoparticle modified carbon paste electrode (NGMCPE) as transducers and ethyl green (EG) as a new electroactive label is described. Electrochemical impedance spectroscopy and cyclic voltammetry techniques were applied for the investigation and comparison of bare CPE and NGMCPE surfaces. Our voltammetric and spectroscopic studies showed gold nanoparticles are enable to facilitate electron transfer between the accumulated label on DNA probe modified electrode and electrode surface and enhance the electrical signals and lead to an improved detection limit. The immobilization of a 15‐mer single strand oligonucleotide probe on the working electrodes and hybridization event between the probe and its complementary sequence as a target were investigated by differential pulse voltammetry (DPV) responses of the EG accumulated on the electrodes. The effects of some experimental variables on the performance of the biosensors were investigated and optimum conditions were suggested. The selectivity of the biosensors was studied using some non‐complementary oligonucleotides. Finally the detection limits were calculated as 1.35×10?10 mol/L and 5.16×10?11 mol/L on the CPE and NEGCPE, respectively. In addition, the biosensors exhibited a good selectivity, reproducibility and stability for the determination of DNA sequences.  相似文献   

11.
Yudum Tepeli  Ulku Anik 《Electroanalysis》2016,28(12):3048-3054
Three different Graphene‐Metallic (Graphene‐Me) nanocomposites – Graphene‐Silver (Graphene‐Ag), Graphene‐Gold (Graphene‐Au) and Graphene‐Platinum (Graphene‐Pt) nanocomposites – were prepared and characterized. The electrochemical performances of these nanocomposites were tested by incorporating them with glassy carbon paste electrode (GCPE) and used them in biofuel cells (BFC) and as amperometric xanthine biosensor transducers. Present work contains the first application of Graphene‐Au and Graphene‐Ag nanocomposite in BFCs and also first application of these Graphene‐Me nanocomposites in xanthine biosensors. Considering BFC, power and current densities were calculated as 2.03 µW cm?2 and 167.46 µA cm?2 for the plain BFC, 3.39 µW cm?2 and 182.53 µA cm?2 for Graphene‐Ag, 4.43 µW cm?2 and 230.15 µA cm?2 for Grapehene‐Au and 6.23 µW cm?2 and 295.23 µA cm?2 for Graphene‐Pt nanocomposite included BFCs respectively. For the amperometric xanthine biosensor linear ranges were obtained in the concentration range between 5 µM and 50 µM with the RSD (n=3 for 30 µM xanthine) value of 4.28 % for plain xanthine biosensor, 3 µM and 50 µM with the RSD (n=3 for 30 µM xanthine) value of 9.37 % for Graphene‐Ag, 5 µM to 20 µM with the RSD (n=3 for 5 µM xanthine) value of 9.00 % and 30 µM to 70 µM with the RSD (n=3 for 30 µM xanthine) value of 8.80 % for Grapehene‐Au and 1 µM and 70 with the the RSD (n=3 for 30 µM xanthine) value of 2.59 % for Grapehene‐Pt based xanthine biosensors respectively.  相似文献   

12.
《Electroanalysis》2004,16(4):268-274
An amperometric method for the determination of the neurotoxic amino acid β‐N‐oxalyl‐L ‐α,β‐diaminopropionic acid (β‐ODAP) using a screen printed carbon electrode (SPCE) is reported. The electrode material was bulk‐modified with manganese dioxide and used as a detector in flow injection analysis (FIA). The enzyme glutamate oxidase (GlOx) was immobilized in a Nafion‐film on the electrode surface. The performance of the biosensor was optimized using glutamate as an analyte. Optimum parameters were found as: operational potential 440 mV (vs. Ag/AgCl), flow rate 0.2 mL min?1, and carrier composition 0.1 mol L?1 phosphate buffer (pH 7.75). The same conditions were used for the determination of β‐ODAP. The signal was linear within the concentration range 53–855 μmol L?1 glutamate and 195–1950 μmol L?1 β‐ODAP. Detection limits (as 3σ value) for both analytes were 9.12 and 111.0 μmol L?1, respectively, with corresponding relative standard deviations of 3.3 and 4.5%. The biosensor retained more than 73% of its activity after 40 days of on‐line use.  相似文献   

13.
We report a novel composite electrode made of chitosan‐SiO2‐multiwall carbon nanotube (CHIT‐SiO2‐MWNT) composite coated on the indium‐tin oxide (ITO) glass substrate. Cholesterol oxidase (ChOx) was covalently immobilized on the CHIT‐SiO2‐MWNT/ITO electrode that resulted in a ChOx/CHIT‐SiO2‐MWNT/ITO cholesterolactive bioelectrode. The CHIT‐SiO2‐MWNT/ITO and ChOx/CHIT‐SiO2‐MWNT/ITO electrodes were characterized with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The influence of various parameters was investigated, including the applied potential, pH of the medium, and the concentration of the enzyme on the performance of the biosensor. The cholesterol bioelectrode exhibited a sensitivity of 3.4 nA/ mgdL?1 with a response time of five seconds. The biosensor using ChOx/CHIT‐SiO2‐MWNT/ITO as the working electrode retained its original response after being stored for six months. The biosensor using ChOx/CHIT‐SiO2‐MWNT/ITO as the working electrode showed a linear current response to the cholesterol concentration in the range of 50–650 mg/dL.  相似文献   

14.
《Electroanalysis》2005,17(19):1780-1788
The amperometric biosensing of aromatic amines using a composite glucose oxidase (GOD)‐peroxidase (HRP) biosensor in reversed micelles is reported. Rigid composite pellets of graphite and Teflon, in which GOD and HRP were coimmobilized by simple physical inclusion, were employed for the biosensor design. This design allows the in situ generation of the H2O2 needed for the enzyme reaction with the aromatic amines, thus preventing the negative effect that the presence of a high H2O2 concentration in solution has on HRP activity. The H2O2 in situ generation is performed by oxidation of glucose catalyzed by GOD. The effect of the composition of the reversed micelles, i.e., the nature of the organic solvent used as the continuous phase, the nature and concentration of the surfactant used as emulsifying agent, the aqueous 0.05 mol L?1 phosphate buffer percentage used as the dispersed phase, and the glucose concentration in the aqueous phase, on the biosensor response was evaluated. Reversed micelles formed with ethyl acetate, a 5% of phosphate buffer (pH 7.0) containing 3.0×10?3 mol L?1 glucose, and 0.1 mol L?1 AOT (sodium dioctylsulfosuccinate), were selected as working medium. Well‐defined and reproducible amperometric signals at 0.00 V were obtained for p‐phenylenediamine, 2‐aminophenol, o‐phenylenediamine, m‐phenylenediamine, 1‐naphthylamine, o‐toluidine and aniline. The useful lifetime of one single biosensor was of 60 days. The trend in sensitivity observed for the aromatic amines is discussed considering the effect of their structure on the stabilization of the radicals formed in the enzyme reaction which are electrochemically reduced. The behavior of the composite bienzyme electrode was also evaluated in a FI (flow injection) system using reversed micelles as the carrier. The suitability of the composite bienzyme electrode for the analysis of real samples was demonstrated by determining aniline in spiked carrots.  相似文献   

15.
A functional composite of single‐walled carbon nanotubes (SWNTs) with hematin, a water‐insoluble porphyrin, was first prepared in 1‐butyl‐3‐methylimidazolium hexafluorophosphate ([BMIM][PF6]) ionic liquid. The novel composite in ionic liquid was characterized by scanning electron microscopy, ultraviolet absorption spectroscopy, and electrochemical impedance spectroscopy, and showed a pair of direct redox peaks of the FeIII/FeII couple. The composite–[BMIM][PF6]‐modified glassy carbon electrode showed excellent electrocatalytic activity toward the reduction of trichloroacetic acid (TCA) in neutral media due to the synergic effect among SWNTs, [BMIM][PF6], and porphyrin, which led to a highly sensitive and stable amperometric biosensor for TCA with a linear range from 9.0×10?7 to 1.4×10?4 M . The detection limit was 3.8×10?7 M at a signal‐to‐noise ratio of 3. The TCA biosensor had good analytical performance, such as rapid response, good reproducibility, and acceptable accuracy, and could be successfully used for the detection of residual TCA in polluted water. The functional composite in ionic liquid provides a facile way to not only obtain the direct electrochemistry of water‐insoluble porphyrin, but also construct novel biosensors for monitoring analytes in real environmental samples.  相似文献   

16.
The highly efficient H2O2 biosensor was fabricated on the basis of the complex films of hemoglobin (Hb), nano ZnO, chitosan (CHIT) dispersed solution and nano Au immobilized on glassy carbon electrode (GCE). Biocompatible ZnO‐CHIT composition provided a suitable microenvironment to keep Hb bioactivity (Michaelis‐Menten constant of 0.075 mmol L?1). The presence of nano Au in matrix could effectively enhance electron transfer between Hb and electrode. The electrochemical behaviors and effects of solution pH values were carefully examined in this paper. The (ZnO‐CHIT)‐Au‐Hb/GCE demonstrated excellently electrocatalytical ability for H2O2. This biosensor had a fast response to H2O2 less than 4 s and excellent linear relationships were obtained in the concentration range from1.94×10?7 to 1.73×10?3 mol L?1 with the detection limit of 9.7×10?8 mol L?1 (S/N=3) under the optimum conditions. Moreover, the stability and reproducibility of this biosensor were evaluated with satisfactory results.  相似文献   

17.
A highly sensitive and stable amperometric tyrosinase biosensor has been developed based on multiwalled carbon nanotube (MWCNT) dispersed in mesoporous composite films of sol–gel‐derived titania and perfluorosulfonated ionomer (Nafion). Tyrosinase was immobilized within a thin film of MWCNT–titania–Nafion composite film coated on a glassy carbon electrode. Phenolic compounds were determined by the direct reduction of biocatalytically‐liberated quinone species at ?100 mV versus Ag/AgCl (3 M NaCl) without a mediator. The present tyrosinase biosensor showed good analytical performances in terms of response time, sensitivity, and stability compared to those obtained with other biosensors based on different sol–gel matrices. Due to the large pore size of the MWCNT–titania–Nafion composite, the present biosensor showed remarkably fast response time with less than 3 s. The present biosensor responds linearly to phenol from 1.0×10?7 M to 5.0×10?5 M with an excellent sensitivity of 417 mA/M and a detection limit of 9.5×10?8 M (S/N=3). The enzyme electrode retained 89% of its initial activity after 2 weeks of storage in 50 mM phosphate buffer at pH 7.0.  相似文献   

18.
A carbon paste‐poly(o‐phenylendiamine)‐modified electrode to be used as amperometric biosensor for 2,4,6‐trichlorophenol (TCP) is described. The enzyme chloroperoxidase (EC 1.11.1.10) from Caldariomyces fumago is immobilized through dispersion in a graphite paraffin oil carbon paste covered by an electrogenerated poly(o‐phenylendiamine) (PPD) layer. The main enzymatic dehalogenation product, 2,6‐dichloro‐1,4‐benzoquinone (DCQ) is characterized by liquid chromatography‐mass spectrometry and cyclic voltammetry. This product is electrochemically active and can be detected amperometrically at +150 mV vs. Ag|AgCl|KCl (3 M). The biosensor exhibits a response time of 4 min, a detection limit of 10?7 M, and a dynamic linear range between 10?7 and 10?6 M. Selectivity as well as operating and storage stability were evaluated.  相似文献   

19.
A novel microfluidic chip‐based fluorescent DNA biosensor, which utilized the electrophoretic driving mode and magnetic beads‐based “sandwich” hybridization strategy, was developed for the sensitive and ultra‐specific detection of single‐base mismatch DNA in this study. In comparison with previous biosensors, the proposed DNA biosensor has much more robust resistibility to the complex matrix of real saliva and serum samples, shorter analysis time, and much higher discrimination ability for the detection of single‐base mismatch. These features, as well as its easiness of fabrication, operation convenience, stability, better reusability, and low cost, make it a promising alternative to the SNPs genotyping/detection in clinical diagnosis. By using the biosensor, we have successfully determined oral cancer‐related DNA in saliva and serum samples without sample labeling and any preseparation or dilution with a detection limit of 5.6 × 10?11 M, a RSD (n = 5) < 5% and a discrimination factor of 3.58–4.54 for one‐base mismatch.  相似文献   

20.
《中国化学》2017,35(8):1305-1310
A novel biosensor was fabricated based on the immobilization of tyrosinase and N ‐acetyl‐L ‐cysteine‐capped gold nanoparticles onto the surface of the glassy carbon electrode via the film forming by chitosan. The NAC‐AuNPs (N ‐acetyl‐L ‐cysteine‐capped gold nanoparticles) with the average size of 3.4 nm had much higher specific surface area and good biocompatibility, which were favorable for increasing the immobilization amount of enzyme, retaining the catalytic activity of enzyme and facilitating the fast electron transfer. The prepared biosensor exhibited suitable amperometric responses at −0.2 V for phenolic compounds vs. saturated calomel electrode. The parameters of influencing on the working electrode such as pH , temperature, working potential were investigated. Under optimum conditions, the biosensor was applied to detect catechol with a linear range of 1.0 × 10−7 to 6.0 × 10−5 mol•L−1 , and the detection limit of 5.0 × 10−8 mol•L−1 (S /N =3). The stability and selectivity of the proposed biosensor were also evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号