首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stereoisomerically pure endo‐ and exo‐7‐halo‐7‐(trimethylstannyl)benzonorcar‐3‐enes (=endo‐ and exo‐(1‐halo‐1a,2,7,7a‐tetrahydro‐1H‐cyclopropa[b]naphthalen‐1‐yl)trimethylstannane) 4 and 6 were selectively obtained by lithium? tin or magnesium? tin transmetalation in good yields (Scheme 2 and 3). The reaction of these compounds with copper(I) thiophene‐2‐carboxylate (CuTC) produced in both cases the corresponding CS‐symmetric bicyclopropylidene (=cyclopropylidenecyclopropane) syn‐ 1 , a single diastereoisomer (Schemes 5 and 6). The structure of syn‐ 1 was undoubtedly elucidated by X‐ray single crystal diffraction. The coupling mechanism of the carbenoid cyclopropane is discussed (Scheme 7).  相似文献   

2.
A systematic study on the Stille and Sonogashira cross‐coupling of iodinated imidazo[1,2‐a]pyridines was performed, permitting the preparation of various vinyl‐, ethynyl‐, and allenyl‐substituted derivatives. These methods are particularly valuable, given their experimental simplicity and high degree of flexibility with regard to functional groups that can be introduced in positions 3, 6, or 8 of the imidazo[1,2‐a]pyridine core. Effects concerning different substitution positions and the nature of the 2‐substituent under various reaction conditions are reported in detail for the above types of unsaturated groups introduced.  相似文献   

3.
4.
Double Heck cross‐coupling reactions of 2,3‐ and 3,5‐dibromopyridine with various alkenes afforded the corresponding novel di(alkenyl)pyridines. The Heck reaction of 2,5‐dibromopyridine unexpectedly afforded 5,5′‐di(alkenyl)‐2,2′‐bipyridines by palladium‐catalyzed dimerization to give 5,5′‐dibromo‐2,2′‐bipyridine and subsequent twofold Heck reaction.  相似文献   

5.
Two novel, stable PdII complexes, compounds 3 and 4 , of two 3‐hydroxypyridine‐2‐carbaldehyde thiosemicarbazones, 1 and 2 , resp., were prepared from Li2PdCl4. The single‐crystal X‐ray structure of complex 3 (= [Pd( 2 )Cl]) shows that the ligand monoanion coordinates in a planar conformation to the metal via the pyridyl N‐, the imine N‐, and the thiolato S‐atoms. Intermolecular H‐bonds, π–π, and CH ? ? ? π interactions lead to a two‐dimensional supramolecular assembly. The electronic, IR, UV/VIS, and NMR spectroscopic data of the two complexes are reported, together with their electrochemical properties. A sophisticated experimental procedure was used to determine the multiple dissociation constants of the ligands 1 and 2 by UV/VIS titration.  相似文献   

6.
Chiral compounds arising from the replacement of hydrogen atoms by deuterium are very important in organic chemistry and biochemistry. Some of these chiral compounds have a non‐measurable specific rotation, owing to very small differences between the isotopomeric groups, and exhibit cryptochirality. This particular class of compounds is difficult to synthesize and characterize. Herein, we present a catalytic and highly enantioselective conversion of terminal alkenes to various β and more remote chiral isotopomers of 1‐alkanols, with ≥99 % enantiomeric excess (ee), by the Zr‐catalyzed asymmetric carboalumination of alkenes (ZACA) and Cu‐catalyzed cross‐coupling reactions. ZACA‐in situ iodinolysis of allyl alcohol and ZACA‐in situ oxidation of TBS‐protected ω‐alkene‐1‐ols protocols were applied to the synthesis of both (R)‐ and (S)‐difunctional intermediates with 80–90 % ee. These intermediates were readily purified to provide enantiomerically pure (≥99 % ee) compounds by lipase‐catalyzed acetylation. These functionally rich intermediates serve as very useful synthons for the construction of various chiral isotopomers of 1‐alkanols in excellent enantiomeric purity (≥99 % ee) by introducing deuterium‐labeled groups by Cu‐catalyzed cross‐coupling reactions without epimerization.  相似文献   

7.
8.
The synthesis, characterization, crystal structure and catalyst activity of the bidentate phosphine complex [1,2‐bis(diphenylphosphino)ethane]palladium(II) bromide, [PdBr2(dppe)], are presented. Treatment of 1,2‐bis(diphenylphosphino)ethane with palladium(II) bromide under mild conditions resulted in the compound in high yield and purity. The characterization of the synthesized compound was performed using spectroscopic methods, such as Fourier transform infrared and NMR, CHN analysis and X‐ray crystallography. The structure of the compound was slightly distorted square planar. This compound was found to work as an efficient catalyst for both Stille and Suzuki cross‐coupling reactions of various aryl halides with triphenyltin chloride and/or phenylboronic acid. Also, the catalyst could be recovered and reused several times without significant loss of its catalytic activity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
The new C2‐symmetric bis‐oxazoline (=bis[4,5‐dihydrooxazole]) 2 with a chiral trans‐(2R,3R)‐2,3‐bis(3,5‐diphenylphenyl)cyclopropylidene (=trans‐(2R,3R)‐2,3‐bis([1,1′: 3′,1″‐terphenyl]‐5′‐yl)cyclopropylidene) backbone was efficiently synthesized (Scheme). All synthetic steps were easy to perform and led to the desired product in good overall yields. Compound 2 was tested and compared as ligand in several enantioselective catalytic reactions such as palladium(0)‐catalyzed enantioselective allylic alkylations and copper(I)‐catalyzed enantioselective cyclopropanations and aziridinations.  相似文献   

10.
11.
12.
13.
14.
15.
The first cross‐coupling reaction between aryl silanes and aryl boronic acids is described. This transformation represents one of the very few examples of coupling reactions between two nucleophilic organometallic reagents and provides a new method for the formation of biaryl compounds. The successful development of this reaction was enabled by the use of commercially available 2,2′‐bis(diphenylphosphino)‐1,1′‐binaphthyl (BINAP) as the ligand. A small amount of BINAP (3 mol %) was sufficient to suppress the formation of the homocoupling products, and the reaction yielded the cross‐coupling products with high selectivity under mild conditions, even when the ratio of the two coupling partners was 1:1.  相似文献   

16.
The radical nature of iron‐catalyzed cross‐coupling between Grignard reagents and alkyl halides has been studied by using a combination of competitive kinetic experiments and DFT calculations. In contrast to the corresponding coupling with aryl halides, which commences through a classical two‐electron oxidative addition/reductive elimination sequence, the presented data suggest that alkyl halides react through an atom‐transfer‐initiated radical pathway. Furthermore, a general iodine‐based quenching methodology was developed to enable the determination of highly accurate concentrations of Grignard reagents, a capability that facilitates and increases the information output of kinetic investigations based on these substrates.  相似文献   

17.
Direct access to complex, enantiopure benzylamine architectures using a synergistic iridium photoredox/nickel cross‐coupling dual catalysis strategy has been developed. New C(sp3)? C(sp2) bonds are forged starting from abundant and inexpensive natural amino acids.  相似文献   

18.
A series of free ligands, H2 L 1 , H2 L 2 , H2 L 3 , and H2 L 4 , designed for the coordination and sensitization of near‐infrared(NIR)‐emitting Nd3+ were synthesized by modifying the salophen Schiff base with different numbers and locations of Br‐substituents. The nature of the Nd3+ complexes in solution was determined to be [ML2]? by spectrophotometric titrations as an indication that the different substituents do not affect significantly the nature of the formed species. The structures were determined in the solid phase from X‐ray diffraction experiments. The stoichiometries and structures in the solid state are different from those observed in solution. We established that the structures in the solid state can be partially controlled by the crystallization conditions. The ligands L 1 – L 4 have the ability to sensitize Nd3+ through intramolecular energy transfer from the ligand to the metal ion. We quantified that the numbers and locations of Br‐substituents control the emitted luminescence intensity of the complex by the heavy‐atom effect.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号