首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We recently proposed a transformation‐free higher‐order compact (HOC) scheme for two‐dimensional (2‐D) steady convection–diffusion equations on nonuniform Cartesian grids (Int. J. Numer. Meth. Fluids 2004; 44 :33–53). As the scheme was equipped to handle only constant coefficients for the second‐order derivatives, it could not be extended directly to curvilinear coordinates, where they invariably occur as variables. In this paper, we extend the scheme to cylindrical polar coordinates for the 2‐D convection–diffusion equations and more specifically to the 2‐D incompressible viscous flows governed by the Navier–Stokes (N–S) equations. We first apply the formulation to a problem having analytical solution and demonstrate its fourth‐order spatial accuracy. We then apply it to the flow past an impulsively started circular cylinder problem and finally to the driven polar cavity problem. We present our numerical results and compare them with established numerical and analytical and experimental results whenever available. This new approach is seen to produce excellent comparison in all the cases. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Hybrid grids consisting of prisms and tetrahedra are employed for the solution of the 3-D Navier–Stokes equations of incompressible flow. A pressure correction scheme is employed with a finite volume–finite element spatial discretization. The traditional staggered grid formulation has been substituted with a collocated mesh approach which uses fourth-order artificial dissipation. The hybrid grid is refined adaptively in local regions of appreciable flow variations. The scheme operations are performed on an edge-wise basis which unifies treatment of both types of grid elements. The adaptive method is employed for incompressible flows in both single and multiply-connected domains. © 1998 John Wiley & Sons, Ltd.  相似文献   

3.
An incompressible Navier–Stokes solver using curvilinear body‐fitted collocated grid has been developed to solve unconfined flow past arbitrary two‐dimensional body geometries. In this solver, the full Navier–Stokes equations have been solved numerically in the physical plane itself without using any transformation to the computational plane. For the proper coupling of pressure and velocity field on collocated grid, a new scheme, designated ‘consistent flux reconstruction’ (CFR) scheme, has been developed. In this scheme, the cell face centre velocities are obtained explicitly by solving the momentum equations at the centre of the cell faces. The velocities at the cell centres are also updated explicitly by solving the momentum equations at the cell centres. By resorting to such a fully explicit treatment considerable simplification has been achieved compared to earlier approaches. In the present investigation the solver has been applied to unconfined flow past a square cylinder at zero and non‐zero incidence at low and moderate Reynolds numbers and reasonably good agreement has been obtained with results available from literature. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents a numerical algorithm using the pseudostress–velocity formulation to solve incompressible Newtonian flows. The pseudostress–velocity formulation is a variation of the stress–velocity formulation, which does not require symmetric tensor spaces in the finite element discretization. Hence its discretization is greatly simplified. The discrete system is further decoupled into an H ( div ) problem for the pseudostress and a post‐process resolving the velocity. This can be done conveniently by using the penalty method for steady‐state flows or by using the time discretization for nonsteady‐state flows. We apply this formulation to the 2D lid‐driven cavity problem and study its grid convergence rate. Also, computational results of the time‐dependent‐driven cavity problem and the flow past rectangular problem are reported. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
An algorithm, based on the overlapping control volume (OCV) method, for the solution of the steady and unsteady two‐dimensional incompressible Navier–Stokes equations in complex geometry is presented. The primitive variable formulation is solved on a non‐staggered grid arrangement. The problem of pressure–velocity decoupling is circumvented by using momentum interpolation. The accuracy and effectiveness of the method is established by solving five steady state and one unsteady test problems. The numerical solutions obtained using the technique are in good agreement with the analytical and benchmark solutions available in the literature. On uniform grids, the method gives second‐order accuracy for both diffusion‐ and convection‐dominated flows. There is little loss of accuracy on grids that are moderately non‐orthogonal. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
Two Cartesian grid stretching functions are investigated for solving the unsteady incompressible Navier–Stokes equations using the pressure–velocity formulation. The first function is developed for the Fourier method and is a generalization of earlier work. This function concentrates more points at the centre of the computational box while allowing the box to remain finite. The second stretching function is for the second‐order central finite difference scheme, which uses a staggered grid in the computational domain. This function is derived to allow a direct discretization of the Laplacian operator in the pressure equation while preserving the consistent behaviour exhibited by the uniform grid scheme. Both functions are analysed for their effects on the matrix of the discretized pressure equation. It is shown that while the second function does not spoil the matrix diagonal dominance, the first one can. Limits to stretching of the first method are derived for the cases of mappings in one and two directions. A limit is also derived for the second function in order to prevent a strong distortion of a sine wave. The performances of the two types of stretching are examined in simulations of periodic co‐flowing jets and a time developing boundary layer. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
We present a fixed‐grid finite element technique for fluid–structure interaction problems involving incompressible viscous flows and thin structures. The flow equations are discretised with isoparametric b‐spline basis functions defined on a logically Cartesian grid. In addition, the previously proposed subdivision‐stabilisation technique is used to ensure inf–sup stability. The beam equations are discretised with b‐splines and the shell equations with subdivision basis functions, both leading to a rotation‐free formulation. The interface conditions between the fluid and the structure are enforced with the Nitsche technique. The resulting coupled system of equations is solved with a Dirichlet–Robin partitioning scheme, and the fluid equations are solved with a pressure–correction method. Auxiliary techniques employed for improving numerical robustness include the level‐set based implicit representation of the structure interface on the fluid grid, a cut‐cell integration algorithm based on marching tetrahedra and the conservative data transfer between the fluid and structure discretisations. A number of verification and validation examples, primarily motivated by animal locomotion in air or water, demonstrate the robustness and efficiency of our approach. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents a coupled finite volume inner doubly iterative efficient algorithm for linked equations (IDEAL) with level set method to simulate the incompressible gas–liquid two‐phase flows with moving interfaces on unstructured triangular grid. The finite volume IDEAL method on a collocated grid is employed to solve the incompressible two‐phase Navier–Stokes equations, and the level set method is used to capture the moving interfaces. For the sake of mass conservation, an effective second‐order accurate finite volume scheme is developed to solve the level set equation on triangular grid, which can be implemented much easier than the classical high‐order level set solvers. In this scheme, the value of level set function on the boundary of control volume is approximated using a linear combination of a high‐order Larangian interpolation and a second‐order upwind interpolation. By the rotating slotted disk and stretching and shrinking of a circular fluid element benchmark cases, the mass conservation and accuracy of the new scheme is verified. Then the coupled method is applied to two‐phase flows, including a 2D bubble rising problem and a 2D dam breaking problem. The computational results agree well with those reported in literatures and experimental data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Recent studies indicate that consistently stabilized methods for unsteady incompressible flows, obtained by a method of lines approach may experience difficulty when the time step is small relative to the spatial grid size. Using as a model problem the unsteady Stokes equations, we show that the semi‐discrete pressure operator associated with such methods is not uniformly coercive. We prove that for sufficiently large (relative to the square of the spatial grid size) time steps, implicit time discretizations contribute terms that stabilize this operator. However, we also prove that if the time step is sufficiently small, then the fully discrete problem necessarily leads to unstable pressure approximations. The semi‐discrete pressure operator studied in the paper also arises in pressure‐projection methods, thereby making our results potentially useful in other settings. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
The numerical method of lines (NUMOL) is a numerical technique used to solve efficiently partial differential equations. In this paper, the NUMOL is applied to the solution of the two‐dimensional unsteady Navier–Stokes equations for incompressible laminar flows in Cartesian coordinates. The Navier–Stokes equations are first discretized (in space) on a staggered grid as in the Marker and Cell scheme. The discretized Navier–Stokes equations form an index 2 system of differential algebraic equations, which are afterwards reduced to a system of ordinary differential equations (ODEs), using the discretized form of the continuity equation. The pressure field is computed solving a discrete pressure Poisson equation. Finally, the resulting ODEs are solved using the backward differentiation formulas. The proposed method is illustrated with Dirichlet boundary conditions through applications to the driven cavity flow and to the backward facing step flow. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
A new fourth‐order compact formulation for the steady 2‐D incompressible Navier–Stokes equations is presented. The formulation is in the same form of the Navier–Stokes equations such that any numerical method that solve the Navier–Stokes equations can easily be applied to this fourth‐order compact formulation. In particular, in this work the formulation is solved with an efficient numerical method that requires the solution of tridiagonal systems using a fine grid mesh of 601 × 601. Using this formulation, the steady 2‐D incompressible flow in a driven cavity is solved up to Reynolds number with Re = 20 000 fourth‐order spatial accuracy. Detailed solutions are presented. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
A new finite volume method for the incompressible Navier–Stokes equations, expressed in arbitrary Lagrangian–Eulerian (ALE) form, is presented. The method uses a staggered storage arrangement for the pressure and velocity variables and adopts an edge‐based data structure and assembly procedure which is valid for arbitrary n‐sided polygonal meshes. Edge formulas are presented for assembling the ALE form of the momentum and pressure equations. An implicit multi‐stage time integrator is constructed that is geometrically conservative to the precision of the arithmetic used in the computation. The method is shown to be second‐order‐accurate in time and space for general time‐dependent polygonal meshes. The method is first evaluated using several well‐known unsteady incompressible Navier–Stokes problems before being applied to a periodically forced aeroelastic problem and a transient free surface problem. Published in 2003 by John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, we propose a new methodology for numerically solving elliptic and parabolic equations with discontinuous coefficients and singular source terms. This new scheme is obtained by clubbing a recently developed higher‐order compact methodology with special interface treatment for the points just next to the points of discontinuity. The overall order of accuracy of the scheme is at least second. We first formulate the scheme for one‐dimensional (1D) problems, and then extend it directly to two‐dimensional (2D) problems in polar coordinates. In the process, we also perform convergence and related analysis for both the cases. Finally, we show a new direction of implementing the methodology to 2D problems in cartesian coordinates. We then conduct numerous numerical studies on a number of problems, both for 1D and 2D cases, including the flow past circular cylinder governed by the incompressible Navier–Stokes equations. We compare our results with existing numerical and experimental results. In all the cases, our formulation is found to produce better results on coarser grids. For the circular cylinder problem, the scheme used is seen to capture all the flow characteristics including the famous von Kármán vortex street. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents a convection–diffusion‐reaction (CDR) model for solving magnetic induction equations and incompressible Navier–Stokes equations. For purposes of increasing the prediction accuracy, the general solution to the one‐dimensional constant‐coefficient CDR equation is employed. For purposes of extending this discrete formulation to two‐dimensional analysis, the alternating direction implicit solution algorithm is applied. Numerical tests that are amenable to analytic solutions were performed in order to validate the proposed scheme. Results show good agreement with the analytic solutions and high rate of convergence. Like many magnetohydrodynamic studies, the Hartmann–Poiseuille problem is considered as a benchmark test to validate the code. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
We present a method for the parallel numerical simulation of transient three‐dimensional fluid–structure interaction problems. Here, we consider the interaction of incompressible flow in the fluid domain and linear elastic deformation in the solid domain. The coupled problem is tackled by an approach based on the classical alternating Schwarz method with non‐overlapping subdomains, the subproblems are solved alternatingly and the coupling conditions are realized via the exchange of boundary conditions. The elasticity problem is solved by a standard linear finite element method. A main issue is that the flow solver has to be able to handle time‐dependent domains. To this end, we present a technique to solve the incompressible Navier–Stokes equation in three‐dimensional domains with moving boundaries. This numerical method is a generalization of a finite volume discretization using curvilinear coordinates to time‐dependent coordinate transformations. It corresponds to a discretization of the arbitrary Lagrangian–Eulerian formulation of the Navier–Stokes equations. Here the grid velocity is treated in such a way that the so‐called Geometric Conservation Law is implicitly satisfied. Altogether, our approach results in a scheme which is an extension of the well‐known MAC‐method to a staggered mesh in moving boundary‐fitted coordinates which uses grid‐dependent velocity components as the primary variables. To validate our method, we present some numerical results which show that second‐order convergence in space is obtained on moving grids. Finally, we give the results of a fully coupled fluid–structure interaction problem. It turns out that already a simple explicit coupling with one iteration of the Schwarz method, i.e. one solution of the fluid problem and one solution of the elasticity problem per time step, yields a convergent, simple, yet efficient overall method for fluid–structure interaction problems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
A semi‐implicit three‐step Runge–Kutta scheme for the unsteady incompressible Navier–Stokes equations with third‐order accuracy in time is presented. The higher order of accuracy as compared to the existing semi‐implicit Runge–Kutta schemes is achieved due to one additional inversion of the implicit operator I‐τγL, which requires inversion of tridiagonal matrices when using approximate factorization method. No additional solution of the pressure‐Poisson equation or evaluation of Navier–Stokes operator is needed. The scheme is supplied with a local error estimation and time‐step control algorithm. The temporal third‐order accuracy of the scheme is proved analytically and ascertained by analysing both local and global errors in a numerical example. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
A collocated discretization of the 3D steady incompressible Navier–Stokes equations based on a flux-difference-splitting formulation is presented. The discretization employs primitive variables of Cartesian velocity components and pressure. The splitting used here is a polynomial splitting introduced by Dick and Linden of Roe type. Second-order accuracy is obtained with the defect correction approach in which the state vector is inter-polated with van Leer's κ-scheme. The underlying solution technique to solve the discretized equations is a parallel multiblock multigrid method. Several 2D and 3D test problems such as driven cavity and channel flows are solved.  相似文献   

18.
The spatial discretization of unsteady incompressible Navier–Stokes equations is stated as a system of differential algebraic equations, corresponding to the conservation of momentum equation plus the constraint due to the incompressibility condition. Asymptotic stability of Runge–Kutta and Rosenbrock methods applied to the solution of the resulting index‐2 differential algebraic equations system is analyzed. A critical comparison of Rosenbrock, semi‐implicit, and fully implicit Runge–Kutta methods is performed in terms of order of convergence and stability. Numerical examples, considering a discontinuous Galerkin formulation with piecewise solenoidal approximation, demonstrate the applicability of the approaches and compare their performance with classical methods for incompressible flows. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, we present an explicit formulation for reduced‐order models of the stabilized finite element approximation of the incompressible Navier–Stokes equations. The basic idea is to build a reduced‐order model based on a proper orthogonal decomposition and a Galerkin projection and treat all the terms in an explicit way in the time integration scheme, including the pressure. This is possible because the reduced model snapshots do already fulfill the continuity equation. The pressure field is automatically recovered from the reduced‐order basis and solution coefficients. The main advantage of this explicit treatment of the incompressible Navier–Stokes equations is that it allows for the easy use of hyper‐reduced order models, because only the right‐hand side vector needs to be recovered by means of a gappy data reconstruction procedure. A method for choosing the optimal set of sampling points at the discrete level in the gappy procedure is also presented. Numerical examples show the performance of the proposed strategy. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A fourth‐order compact finite difference scheme on the nine‐point 2D stencil is formulated for solving the steady‐state Navier–Stokes/Boussinesq equations for two‐dimensional, incompressible fluid flow and heat transfer using the stream function–vorticity formulation. The main feature of the new fourth‐order compact scheme is that it allows point‐successive overrelaxation (SOR) or point‐successive underrelaxation iteration for all Rayleigh numbers Ra of physical interest and all Prandtl numbers Pr attempted. Numerical solutions are obtained for the model problem of natural convection in a square cavity with benchmark solutions and compared with some of the accurate results available in the literature. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号