首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The new cyclic renewable mercury film silver based electrode (Hg(Ag)FE), applied for the determination of uranium(VI) traces using differential pulse adsorptive cathodic stripping voltammetry (DP AdCSV) is presented. The Hg(Ag)FE electrode with a surface area adjustable from 1.1 to 12 mm2 is characterized by very good surface reproducibility (≤2%) and long‐term stability (more than 2 thousand measurement cycles). The mechanical refreshing of mercury film is realized in the simple constructed device, in a time shorter than 1–2 seconds. The effects of various factors such as: preconcentration potential and time, pulse height, step potential and supporting electrolyte composition are optimized. The calibration graph is linear from 0.4 nM (95 ng L?1) to 250 nM (60 μg L?1) for an accumulation time of tacc=20 s, with correlation coefficient of 0.9996. For a Hg(Ag)FE with a surface area of 2.7 mm2 the detection limit for an accumulation time of 120 s is as low as 12 ng L?1. The repeatability of the method at a concentration level of the analyte as low as 2.4 μg L?1, expressed as RSD is 2.5% (n=7). The proposed method was successfully applied and validated by studying the recovery of U(VI) from spiked river water and sediment samples.  相似文献   

2.
S. Skrzypek 《Electroanalysis》2011,23(12):2781-2788
Moroxydine (Mor.) is an antiviral agent of biguanide structure. The paper presents a new silver amalgam film electrode (Hg(Ag)FE) for determination of Mor. in phosphate buffer, pH 6.2 (LOD=4×10?9 mol L?1, LOQ= 1×10?8 mol L?1) and in spiked urine using square wave adsorptive stripping voltammetry. It was found that the compound can act as an electrocatalyst not only at hanging mercury drop electrode but also at the Hg(Ag)FE. The electrode mechanism is connected with the hydrogen evolution reaction catalyzed by moroxydine. Adsorption of moroxydine at the mercury electrode was studied and special arrangements of molecules enabling electron transfer of the protonated form of moroxydine is suggested.  相似文献   

3.
Robert Piech 《Electroanalysis》2008,20(22):2475-2481
The new cyclic renewable mercury film silver based electrode (Hg(Ag)FE), applied for the determination of selenium(IV) traces in the presence of copper ions using differential pulse cathodic stripping voltammetry (DP CSV) is presented. The preparation of the Hg(Ag)FE is very simple. The effects of various factors such as: preconcentration potential and time, pulse height, step potential and supporting electrolyte composition are optimized. The calibration graph is linear from 0.5 nM (39 ng L?1) to 100 nM (7.9 μg L?1) for a preconcentration time of 45 s, with correlation coefficient of 0.9995. For a Hg(Ag)FE with a surface area of 8 mm2 the detection limit for a preconcentration time of 90 s is as low as 17 ng L?1. The repeatability of the method at a concentration level of the analyte as low as 2 μg L?1, expressed as RSD is 2.7% (n=7). The proposed method was successfully applied and validated by studying the certified reference material (bovine liver BCR‐185) and simultaneously recovery of Se(IV) from spiked water samples.  相似文献   

4.
The refreshable mercury film silver based electrode Hg(Ag)FE applied for determination of Cr(VI) traces using catalytic adsorptive striping voltammetry (CAdSV) will be presented. The film electrode is characterized by its very good surface reproducibility (not less than 2%) and long-term stability (1500–2000 measurement cycles). The mechanical refreshing of mercury film is realized in the specially constructed device, in a time shorter than 1–2 s.

In the paper, it will be proved that a mechanically weak hanging mercury drop electrode (HMDE) may be substituted by mercury film Hg(Ag)FE electrode with a surface area adjustable from 1.5 to 12 mm2. For the electrode surface 4 mm2 the detection limit obtained for Cr(VI) was 0.19 nM, while the linearity range measured for a 20 s accumulation time was between 0.5 and 50 nM. The relative standard deviation (R.S.D.) in determination of Cr(VI) varied from 1 to 5%. The influence of the excess of Cr(III) on determination of Cr(VI) was analyzed using samples from the Dobczyce reservoir spiked with known amounts of Cr(VI) and Cr(III).  相似文献   


5.
New, renewable copper (Hg(Cu)FE) and silver (Hg(Ag)FE) based amalgam film electrodes applied for the determination of elemental sulfur using differential pulse cathodic stripping voltammetry are presented. With surface areas adjustable from 1 to 12 mm2, both electrodes are characterized by very good surface reproducibility (≤2%) and long‐term stability (a few thousand measurement cycles). The mechanical refreshing of the amalgam film takes about 1–2 seconds. The effects of various factors such as instrumental parameters and the supporting electrolyte composition were optimized. Interferences from sulfides are easily removed by the addition of acid, and bubbling with argon, for Hg(Ag)FE. In the case of Hg(Cu)FE, sulfides did not interfere. The calibration graph is linear within the studied range from 16 ng L?1 to 4.8 μg L?1 for Hg(Cu)FE, and up to 6.4 μg L?1 for Hg(Ag)FE (tacc=15 s). The correlation coefficients for the two electrodes were at least 0.997. The detection limits for a low concentration of S(0) and tacc=60 s are as low as 14 ng L?1 for Hg(Cu)FE and 4 ng L?1 for Hg(Ag)FE. The proposed method was successfully applied and validated by studying the recovery of S(0) from spiked river water.  相似文献   

6.
Robert Piech 《Electroanalysis》2009,21(16):1842-1847
A new adsorptive stripping voltammetric method for the determination of trace gallium(III) based on the adsorption of gallium(III)‐catechol complex on the cyclic renewable mercury film silver based electrode (Hg(Ag)FE) is presented. The effects of various factors such as: preconcentration potential and time, pulse height, step potential and supporting electrolyte composition are optimized. The calibration graph is linear from 2 nM (0.14 μg L?1) to 100 nM (6.97 μg L?1) for a preconcentration time of 30 s, with correlation coefficient of 0.9993. For a Hg(Ag)FE with a surface area of 9.7 mm2 the detection limit for a preconcentration time of 90 s is as low as 7 ng L?1. The repeatability of the method at a concentration level of the analyte as low as 0.05 μg L?1, expressed as RSD is 3.6% (n=5). The proposed method was successfully applied by studying the natural samples and simultaneous recovery of Ga(III) from spiked water and sediment samples.  相似文献   

7.
Robert Piech 《Electroanalysis》2010,22(16):1851-1856
A new adsorptive stripping voltammetric method for the determination of trace scandium(III) based on the adsorption of scandium(III)‐mordant blue 9 complex on the cyclic renewable mercury film silver based electrode (Hg(Ag)FE) is presented. The effects of various factors such as: preconcentration potential and time, pulse height, step potential and supporting electrolyte composition are optimized. The calibration graph is linear from 2 nM (0.09 μg L?1) to 90 nM (4 μg L?1) for a preconcentration time of 45 s, with correlation coefficient of 0.9995. For a Hg(Ag)FE with a surface area of 7.9 mm2 the detection limit for a preconcentration time of 90 s is as low as 5 ng L?1. The repeatability of the method at a concentration level of the analyte as low as 0.2 μg L?1, expressed as RSD is 1.9 % (n=5). The proposed method was successfully applied and validated by studying the certified reference material (CRM 320 – river sediment) and natural samples with simultaneous recovery of Sc(III) from spiked water and sediment samples.  相似文献   

8.
The paper presents the use of a renewable silver‐amalgam film electrode (Hg(Ag)FE) for the determination of the insecticide thiamethoxam (TMO) in Britton‐Robinson buffer pH 7.0 (LOD=0.25 µg mL?1, LOQ=0.70 µg mL?1) by direct cathodic square‐wave voltammetry (SWV). The voltammetric response for TMO obtained at this electrode was the same as that obtained with a hanging mercury drop electrode, represented by two distinct reduction peaks. Since the electron transfer processes are coupled with chemical reactions involving protons, the SWV signals strongly depend on the pH of the supporting electrolyte. The developed Hg(Ag)FE‐SWV method was tested for the determination of TMO in spiked honey and river water samples, as well as for the determination of its content in the commercial formulation Actara 25 WG.  相似文献   

9.
《Electroanalysis》2006,18(12):1223-1226
A sensitive catalytic adsorptive stripping voltammetric procedure for determination of traces of total chromium in environmental samples is reported. The method is based on the preconcentration of a Cr(III)? H2DTPA complex by adsorption at the HMDE from an acetate buffer solution at the potential ?1.0 V vs. Ag/AgCl. Total chromium was determined as Cr(III) after reduction of Cr(VI) to Cr(III) by NaHSO3. In order to stabilize the signal of Cr(III) the measurements were performed at 5 °C. The calibration graph for chromium for an accumulation time of 60 s was linear in the range from 5×10?10 to 5×10?8 mol L?1. The relative standard deviation for a chromium concentration of 1×10?8 mol L?1 was 3.9% (n=5). The detection limit for accumulation time of 60 s was about 8×10?11 mol L?1. The validation of the procedure was performed by the analysis of the certified reference materials.  相似文献   

10.
《Electroanalysis》2005,17(17):1540-1546
The accumulation voltammetry of mercury(II) was investigated at a carbon paste electrode chemically modified with silica gel functionalized with 2,5‐dimercapto‐1,3,4‐thiadiazole (DTTPSG‐CPE). The repetitive cyclic voltammogram of mercury(II) solution in the potential range ?0.2 to +0.8 V (vs. Ag/AgCl), (0.02 mol L?1 KNO3 ; v=20 mV s?1) show two peaks one at about 0.0 V and other at 0.31 V. However, the cathodic wave peak, around 0.0 V, is irregular and changes its form in each cycle. This peak at about 0.0 V is the reduction current for mercury(II) accumulated in the DTTPSG‐CPE. The anodic wave peak at 0.31 V is well‐defined and does not change during the cycles. The resultant material was characterized by cyclic and differential pulse anodic stripping voltammetry performed with the electrode in differents supporting electrolytes. The mercury response was evaluated with respect to pH, electrode composition, preconcentration time, mercury concentration, “cleaning” solution, possible interferences and other variables. The precision for six determinations (n=6) of 0.05 and 0.20 mg L?1 Hg(II) was 2.8 and 2.2% (relative standard deviation), respectively. The method was satisfactory and used to determine the concentration of mercury(II) in natural waters contaminated by this metal.  相似文献   

11.
Simple cyclic renewable silver amalgam film electrode (Hg(Ag)FE), applied for the determination of gallium(III) using differential pulse anodic stripping voltammetry (DP ASV), is presented. The effects of various factors such as: preconcentration potential and time, pulse height, step potential and supporting electrolyte composition are optimised. The calibration graph is linear from 5?nM (0.35?µg?L?1) to 80?nM (5.6?µg?L?1) for a preconcentration time of 60?s, with correlation coefficient of 0.995. For a Hg(Ag)FE with a surface area of 9.9?mm2 the detection limit for a preconcentration time of 120?s is as low as 0.1?µg?L?1. The repeatability of the method at a concentration level of the analyte as low as 3.5?µg?L?1, expressed as RSD is 3.2% (n?=?5). The proposed method was successfully applied by studying the synthetic samples and simultaneously recovery of Ga(III) from spiked aluminium samples.  相似文献   

12.
A sensitive and fast method for the simultaneous determination of trace amounts of nickel and cadmium in real samples has been described using differential pulse adsorptive stripping voltammetry (DPASV) by adsorptive accumulation of the N,N′‐bis(salicylaldehydo)4‐carboxyphenylenediamine (BSCPDA)–complex on the hanging mercury drop electrode (HMDE). As supporting electrolyte 0.02 mol L?1 ammonia buffers containing ligand has been used. Optimal analytical conditions were found to be: BSCPDA concentration of 42 μM, pH 9.6 and adsorption potential at ?50 mV versus Ag/AgCl. With an accumulation time of 20 s, the peaks current are proportional to the concentration of nickel and cadmium over the 1–180, and 0.5–200 ng mL?1 with detection limits of 0.06 and 0.03 ng mL?1 respectively. The sensitivity of method for determination of nickel and cadmium were obtained 0.54 and 0.98 nA mL ng?1, respectively. The procedure was applied to simultaneous determination of nickel and cadmium in some real and synthetic artificial samples with satisfactory results.  相似文献   

13.
《Electroanalysis》2004,16(18):1508-1513
A stripping voltammetric method for the determination of ethylenethiourea in water samples is described based on its adsorptive deposition at the hanging mercury drop electrode (HMDE). In a borate buffer (pH 9.0) as supporting electrolyte, ETU is deposited at +100 mV (vs. Ag/AgCl) and stripped during the cathodic scan. The linear range for the measurements was from 2.0 to 100 μg L?1, with a detection limit calculated as 1.4 μg L?1 after a deposition time of 300 s and a RSD of 1.9% (n=5) for 50 μg L?1 of ETU measured. The interferences of some organic compounds and metallic ions were tested. Recoveries between 93 and 110% were obtained using the standard addition method for spiked samples of natural and drinking waters. The method is rapid and applicable in the monitoring of ETU residues in water samples.  相似文献   

14.
《Electroanalysis》2006,18(11):1081-1089
This paper describes the voltammetric behavior of As(III) at the hanging mercury drop electrode (HMDE) in the presence of sodium diethyl dithiocarbamate (SDDC) and a new voltammetric method for the determination of As(III) at trace levels. The method is based on the adsorptive deposition of a As(III) complex with SDDC at ?0.45 V (vs. Ag/AgCl) on the HMDE in acidic medium of 0.01 mol L?1 HCl (pH 2.0) and its cathodic stripping during the potential scan (100 mV s?1). The linear range for the determination of As(III) in the presence of SDDC (4 μmol L?1) in water samples was between 1 and 10 μg L?1 for a deposition time of 300 s (r=0.994) and between 10 and 100 μg L?1 for a deposition time of 60 s (r=0.999). For the determination of As(III) in dialysis concentrate samples, the linear range was between 5 and 25 μg L?1 for a deposition time of 180 s (r=0.992) and between 10 and 100 μg L?1 for a deposition time of 60 s (r=0.996). Detection limits of 0.3 and 2.2 μg L?1 in water and dialysis concentrate samples were calculated for the method using a deposition time of 300 and 180 s, respectively. Recovery values between 93.0 and 110.0% for As(III) added to deionized, mineral, seawater (synthetic and real) and dialysis concentrate samples prove the satisfactory accuracy and applicability of the procedure.  相似文献   

15.
The renewable mercury film electrode, applied for the determination of papaverine traces using differential pulse adsorptive stripping voltammetry (DP AdSV) is presented. The calibration graph obtained for papaverine is linear from 1.25 nM (0.42 µg L?1) to 95 nM (32.2 µg L?1) for a preconcentration time of 60 s, with correlation coefficient of 0.998. For the renewable mercury electrode (Hg(Ag)FE) with a surface area of 9.1 mm2 the detection limit for a preconcentration time of 60 s is 0.7 nM (0.24 µg L?1). The repeatability of the method at a concentration level of the analyte as low as 17 µg L?1, expressed as RSD is 3.3% (n=5). The proposed method was successfully applied and validated by studying the recovery of papaverine from drugs, urine and synthetic solution.   相似文献   

16.
A graphite electrode modified with silver (Ag‐CPE) has been applied to detect mercury(II) using differential pulse voltammetry (DPV). Under optimized conditions, the calibration curve is linear in the range from 5.0×10?8 mol L?1 to 1.0×10?4 mol L?1 of mercury(II). The detection limit was found to be 3.38×10?8 mol L?1 with a relative standard deviation (RSD) of 2.25 % (n=8). The proposed method was successfully applied for the detection of mercury(II) in leachate samples. The Ag‐CP composites were characterized using X‐ray diffraction (XRD), BET adsorption analysis and scanning electron microscopy (SEM).  相似文献   

17.
Piech R  Baś B  Kubiak WW 《Talanta》2008,76(2):295-300
The new cyclic renewable mercury film silver based electrode (Hg(Ag)FE), applied for the determination of molybdenum(VI) traces using differential pulse adsorptive cathodic stripping voltammetry (DP AdSV) is presented. The Hg(Ag)FE electrode is characterized by very good surface reproducibility (相似文献   

18.
A new simple and direct electroanalytical method was developed for the determination of azidothymidine in commercial pharmaceutical preparations. It is based on differential pulse voltammetry at silver solid amalgam electrode with polished surface (p‐AgSAE) or surface modified by mercury meniscus (m‐AgSAE). The electroreduction of azidothymidine in basic media at these electrodes gives rise to one irreversible cathodic peak. Its potential in 0.05 mol L?1 borate buffer, pH 9.3 at ca. ?1050 mV is comparable to that using hanging mercury drop electrode (HMDE). Achieved limits of quantitation are in the 10?7 mol L?1 concentration range for both amalgam electrodes. According to the procedure based on the standard addition technique, the recoveries of known amounts of azidothymidine contained in pharmaceutical preparations available in capsules were 101.4±1.8% (m‐AgSAE), 100.3±3.5% (p‐AgSAE) and 102.0±1.0% (HMDE) (n=10). There was no significant difference between the values gained by proposed voltammetric methods and the HPLC‐UV recommended by the United States Pharmacopoeia regarding the mean values and standard deviations.  相似文献   

19.
《Analytical letters》2012,45(12):2387-2403
Abstract

A detailed study of voltammetric behavior of ethiofencarb (ETF) is reported using glassy carbon electrode (GCE) and hanging mercury drop electrode (HMDE). With GCE, it is possible to verify that the oxidative mechanism is irreversible, independent of pH, and the maximum intensity current was observed at +1.20 V vs. AgCl/Ag at pH 1.9. A linear calibration line was obtained from 1.0×10?4 to 8.0×10?4 mol L?1 with SWV method. To complete the electrochemical knowledge of ETF pesticide, the reduction was also explored with HMDE. A well‐defined peak was observed at –1.00 V vs. AgCl/Ag in a large range of pH with higher signal at pH 7.0. Linearity was obtained in 4.2×10?6 and 9.4×10?6 mol L?1 ETF concentration range.

An immediate alkaline hydrolysis of ETF was executed, producing a phenolic compound (2‐ethylthiomethylphenol) (EMP), and the electrochemical activity of the product was examined. It was deduced that it is oxidized on GCE at +0.75 V vs. AgCl/Ag with a maximum peak intensity current at pH 3.2, but the compound had no reduction activity on HMDE.

Using the decrease of potential peak, a flow injection analysis (FIA) system was developed connected to an amperometric detector, enabling the determination of EMP over concentration range of 1.0×10?7 and 1.0×10?5 mol L?1 at a sampling rate of 60 h?1. The results provided by FIA methodology were performed by comparison with results from high‐performance liquid chromatography (HPLC) technique and demonstrated good agreement with relative deviations lower than 4%. Recovery trials were performed and the obtained values were between 98 and 104%.  相似文献   

20.
《Electroanalysis》2003,15(2):108-114
An imprinted polymer modified hanging mercury drop electrode (HMDE) in Model 303A system in conjunction with a PAR Model 264A Polarographic Analyzer/Stripping Voltammeter has been used for the selective analysis of a diquat herbicide viz., 5,6‐dihydropyrazino[1,2,3,4‐[lmn]‐1,10‐phenanthrolinium dichlorides in differential pulse cathodic stripping voltammetry mode. Complex aqueous samples (drinking water and agricultural soil suspension), spiked with a diquat herbicide, were directly analyzed by the adsorptive accumulation of the analyte over the working electrode (accumulation potential ?0.8 V (vs. Ag/AgCl), accumulation time 120 s, pH 7.0, supporting electrolyte 0.1 M KCl, scan rate 10 mV s?1, pulse amplitude 25 mV). The limit of detection for diquat herbicide was found to be 0.34 nmol L?1 (0.1 ppb, RSD 2%, S/N=2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号