首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tritylated and silylated self‐complementary A*[s]U*[s]A*[s]U* and U*[s]A*[s]U*[s]A* tetramers 18 and 24 , linked by thiomethylene groups (abbreviated as [s]) between a nucleobase and C(5′) of the neighbouring nucleoside unit were prepared by a linear synthesis based on S‐alkylation of 5′‐thionucleosides by 6‐(chloromethyl)uridines, 7 or 10 , or 8‐(chloromethyl)adenosines, 12 or 15 . The tetramers 18 and 24 were detritylated to the monoalcohols 19 and 25 , and these were desilylated to the diols 20 and 26 , respectively. The association of the tetramers 18 – 21 and 24 – 26 in CDCl3 or in CDCl3/(D6)DMSO 95 : 5 was investigated by the concentration dependence of the chemical shifts for H? N(3) or H2N? C(6). The formation of cyclic duplexes connected by four base pairs is favoured by the presence of one and especially of two OH groups. The diol 20 with the AUAU sequence prefers reverse‐Hoogsteen, and diol 26 with the UAUA sequence Watson–Crick base pairing. The structure of the cyclic duplex of 26 in CDCl3 at 2° was derived by a combination of AMBER* modeling and simulated annealing with NMR‐derived distance and torsion‐angle restraints resulting in a Watson–Crick base‐paired right‐handed antiparallel helix showing large roll angles, especially between the centre base pairs, leading to a bent helix axis.  相似文献   

2.
The formation of cyclic duplexes (pairing) of known oxymethylene‐linked self‐complementary U*[o]A(*) dinucleosides contrasts with the absence of pairing of the ethylene‐linked U*[ca]A(*) analogues. The origin of this difference, and the expected association of U*[x]A(*) and A*[x]U(*) dinucleosides with x=CH2, O, or S was analysed. According to this analysis, pairing occurs via constitutionally isomeric Watson–Crick, reverse WatsonCrick, Hoogsteen, or reverse Hoogsteen H‐bonded linear duplexes. Each one of them may give rise to three diastereoisomeric cyclic duplexes, and each one of them can adopt three main conformations. The relative stability of all conformers with x=CH2, O, or S were analysed. U*[x]A(*) dinucleosides with x=CH2 do not form stable cyclic duplexes, dinucleosides with x=O may form cyclic duplexes with a gg‐conformation about the C(4′)? C(5′) bond, and dinucleosides with x=S may form cyclic duplexes with a gt‐conformation about this bond. The temperature dependence of the chemical shift of H? N(3) of the self‐complementary, oxymethylene‐linked U*[o]A(*) dinucleosides 1 – 6 in CDCl3 in the concentration range of 0.4–50 mM evidences equilibria between the monoplex, mainly linear duplexes, and higher associates for 3 , between the monoplex and cyclic duplexes for 6 , and between the monoplex, linear, and cyclic duplexes as well as higher associates for 1, 2, 4 , and 5 . The self‐complementary, thiomethylene‐linked U*[s]A(*) dinucleosides 27 – 32 and the sequence isomeric A*[s]U(*) analogues 33 – 38 were prepared by S‐alkylation of the 6‐(mesyloxymethyl)uridine 12 and the 8‐(bromomethyl)adenosine 22 . The required thiolates were prepared in situ from the C(5′)‐acetylthio derivatives 9, 15, 19 , and 25 . The association in CHCl3 of the thiomethylene‐linked dinucleoside analogues was studied by 1H‐NMR and CD spectroscopy, and by vapour‐pressure osmometric determination of the apparent molecular mass. The U*[s]A(*) alcohols 28, 30 , and 31 form cyclic duplexes connected by Watson–Crick H‐bonds, while the fully protected dimers 27 and 29 form mainly linear duplexes and higher associates. The diol 32 forms mainly cyclic duplexes in solution and corrugated ribbons in the solid state. The nucleobases of crystalline 32 form reverse Hoogsteen H‐bonds, and the resulting ribbons are cross‐linked by H‐bonds between HOCH2? C(8/I) and N(3/I). Among the A*[s]U(*) dimers, only the C(8/I)‐hydroxymethylated 37 forms (mainly) a cyclic duplex, characterized by reverse Hoogsteen base pairing. The dimers 34 – 36 form mainly linear duplexes and higher associates. Dimers 34 and particularly 38 gelate CHCl3. Temperature‐dependent CD spectra of 28, 30, 31 , and 37 evidence π‐stacking in the cyclic duplexes. Base stacking in the particularly strongly associating diol 32 in CHCl3 solution is evidenced by a melting temperature of ca. 2°.  相似文献   

3.
Inspection of Maruzen models and force‐field calculations suggest that oligonucleotide analogues integrating backbone and bases (ONIBs) with an aminomethylene linker form similar cyclic duplexes as the analogous oxymethylene linked dinucleosides. The self‐complementary adenosine‐ and uridine‐derived aminomethylene‐linked A*[n ]U dinucleosides 15 – 17 were prepared by an aza‐Wittig reaction of the aldehyde 10 with an iminophosphorane derived from azide 6 . The sequence‐isomeric U*[n ]A dinucleosides 18 – 20 were similarly prepared from aldehyde 3 and azide 12 . The N‐ethylamine 5 , the acetamides 7 and 14 , and the amine 13 were prepared as references for the conformational analysis of the dinucleosides. In contradistinction to the results of calculations, the N‐ethylamine 5 exists as intramolecularly H‐bonded hydroxyimino tautomer. The association in CDCl3 of these dinucleosides was studied by 1H‐NMR and CD spectroscopy. The A*[n ]U dinucleosides 16 and 17 associate more strongly than the sequence isomers 19 and 20 ; the cyclic duplexes of 16 form preferentially WatsonCrick‐type base pairs, while 17, 19 , and 20 show both WatsonCrick‐ and Hoogsteen‐type base pairing. The cyclic duplexes of the aminomethylene‐linked dinucleosides prefer a gg‐orientation of the linker. No evidence was found for an intramolecular H‐bond of the aminomethylene group. The CD spectra of 16 and 17 show a strong, those of 19 a weak, and those of 20 almost no temperature dependence.  相似文献   

4.
The self‐complementary guanosine‐ and cytidine‐derived aminomethylene‐linked C*[n ]G dinucleoside 9 was synthesized by reductive amination of aldehyde 3 with an iminophosphorane derived from azide 7 . Deacylation of 9 gave the isopropylidene‐protected dinucleoside 10 . The sequence‐isomeric G*[n ]C dinucleoside 11 was similarly prepared from aldehyde 8 and azide 5 , and deacylated to 12 . The association of 10 and 12 in CHCl3 or in CHCl3/DMSO mixtures, and the structure of the associates were studied by 1H‐NMR, ESI‐MS, CD, and vapor pressure osmometry (VPO). Broad 1H‐NMR signals of dinucleosides 10 and 12 evidence an equilibrium between duplexes and quadruplexes (Hoogsteen base pairing between the Watson? Crick base‐paired duplexes). The quadruplex dominates for the G*[n ]C dinucleoside 12 between ?50° and room temperature. The sequence‐isomeric C*[n ]G 10 forms mostly only a cyclic duplex in CDCl3 and in CDCl3/(D6)DMSO 9 : 1.  相似文献   

5.
The self‐complementary aminomethylene‐linked A*[n] U* dinucleosides 23 – 26 were prepared by reductive coupling of aldehyde 10 and azide 8 . The U*[n] A* sequence isomers 19 – 21 were similarly prepared from aldehyde 14 and azide 3 . The substituents at C(6/I) of 23 – 26 and at C(8/I) of 19 – 21 strongly favour the syn‐conformation. The A*[n] U* dinucleoside 23 associates more strongly than the sequence‐isomeric U*[n] A* dinucleoside 19 . The A*[n] U* dinucleosides 23 and 24 associate more strongly than the analogues devoid of the substituent at C(6/I), while the U*[n] A* dinucleoside 19 associates less strongly than the analogue devoid of the substituent at C(8/I). While 23 and 24 form cyclic duplexes mostly by WatsonCrick‐type base pairing, 25 only forms linear associates. The U*[n] A* dinucleoside 19 forms mostly linear duplexes and higher associates, and 21 forms cyclic duplexes showing both WatsonCrick‐ and Hoogsteen‐type base pairing. The cyclic duplexes of the aminomethylene‐linked dinucleosides show both the gg‐ and gt‐orientation of the linker, with the gg‐orientation being preferred.  相似文献   

6.
The self‐complementary UA and AU dinucleotide analogues 41 – 45, 47, 48 , and 51 – 60 were prepared by Sonogashira coupling of 6‐iodouridines with C(5′)‐ethynylated adenosines and of 8‐iodoadenosines with C(5′)‐ethynylated uridines. The dinucleotide analogues associate in CDCl3 solution. The C(6/I)‐unsubstituted AU dimers 51 and 54 prefer an anti‐oriented uracilyl group and form stretched linear duplexes. The UA propargyl alcohols 41 and 43 – 45 possess a persistent intramolecular O(5′/I)? H???N(3/I) H‐bond and, thus, a syn‐oriented adeninyl and a gt‐ or tg‐oriented ethynyl moiety; they form corrugated linear duplexes. All other dimers form cyclic duplexes characterized by syn‐oriented nucleobases. The preferred orientation of the ethynyl moiety (the C(4′),C(5′) torsion angle) defines a conformation between gg and one where the ethynyl group eclipses O(4′/I). The UA dimers 42, 47 , and 48 form Watson–Crick H‐bonds, the AU dimers 56 and 58 – 60 H‐bonds of the Watson–Crick‐type, the AU dimers 53 and 55 reverse‐Hoogsteen, and 57 Hoogsteen H‐bonds. The pairing mode depends on the substituent of C(5′/I) (H, OSiiPr3; OH) and on the H‐bonds of HO? C(5′/I) in the AU dimers. Association constants were derived from the concentration‐dependent chemical shift for HN(3) of the uracilyl moiety; they vary from 45–104 M ?1 for linear duplexes to 197–2307 M ?1 for cyclic duplexes. The thermodynamic parameters were determined by van't Hoff analysis of the temperature‐dependence of the (concentration‐dependent) chemical shift for HN(3) of the uracilyl moiety. Neglecting stacking energies, one finds an average energy of 3.5–4.0 kcal/mol per intermolecular H‐bond. Base stacking is evidenced by the temperature‐dependent CD spectra. The crystal structure of 54 shows two antiparallel chains of dimers connected by Watson‐Crick H‐bonds. The chains are bridged by a strong H‐bond between the propargylic OH and O?C(4) and by weak reverse A ? A Hoogsteen H‐bonds.  相似文献   

7.
The self‐complementary (Z)‐configured U*[ce]A(*) dinucleotide analogues 6, 8, 10, 12, 14 , and 16 , and the A*[ce]U(*) dimers 19, 21, 23, 25, 27 , and 29 were prepared by partial hydrogenation of the corresponding ethynylene linked dimers. Photolysis of 14 led to the (E)‐alkene 17 . These dinucleotide analogues associate in CDCl3 solution, as evidenced by NMR and CD spectroscopy. The thermodynamic parameters of the duplexation were determined by van't Hoff analysis. The (Z)‐configured U*[ce]A(*) dimers 14 and 16 form cyclic duplexes connected by WatsonCrick H‐bonds, the (E)‐configured U*[ce]A dimer 17 forms linear duplexes, and the U*[ce]A(*) allyl alcohols 6, 8, 10 , and 12 form mixtures of linear and cyclic duplexes. The C(6/I)‐unsubstituted A*[ce]U allyl alcohols 19 and 23 form linear duplexes, whereas the C(6/I)‐substituted A*[ce]U* allyl alcohols 21 and 25 , and the C(5′/I)‐deoxy A*[ce]U(*) dimers 27 and 29 also form minor amounts of cyclic duplexes. The influence of intra‐ and intermolecular H‐bonding of the allyl alcohols and the influence of the base sequence upon the formation of cyclic duplexes are discussed.  相似文献   

8.
The unusually N8‐glycosylated pyrazolo[3,4‐d]pyrimidine‐4,6‐diamine 2′‐deoxyribonucleoside ( 3 ) was synthesized and converted to the phosphoramidite 11 . Oligonucleotides were prepared by solid‐phase synthesis, and the base pairing of compound 3 was studied. In non‐self‐complementary duplexes containing compound 3 located opposite to the four canonical DNA constituents, strong base pairs are formed that show ambiguous pairing properties. The self‐complementary duplex d( 3 ‐T)6 ( 34 ⋅ 34 ) is significantly more stable than d(A‐T)6.  相似文献   

9.
The self‐complementary, ethylene‐linked U*[ca]A(*) dinucleotide analogues 8, 10, 12, 14, 16 , and 18 , and the sequence‐isomeric A*[ca]U(*) analogues 20, 22, 24, 26, 28 , and 30 were obtained by Pd/C‐catalyzed hydrogenation of the corresponding, known ethynylene‐linked dimers. The association of the ethylene‐linked dimers was investigated by NMR and CD spectroscopy. The U*[ca]A(*) dimers form linear duplexes and higher associates (K between 29 and 114M ?1). The A*[ca]U(*) dimers, while associating more strongly (K between 88 and 345M ?1), lead mostly to linear duplexes and higher associates; they form only minor amounts of cyclic duplexes. The enthalpy–entropy compensation characterizing the association of the U*[cx]A(*) and A*[cx]U(*) dimers (x=y, e, and a) is discussed.  相似文献   

10.
Syntheses are described for two novel twisted intercalating nucleic acid (TINA) monomers where the intercalator comprises a benzene ring linked to a naphthalimide moiety via an ethynediyl bridge. The intercalators Y and Z have a 2‐(dimethylamino)ethyl and a methyl residue on the naphthalimide moiety, respectively. When used as triplex‐forming oligonucleotides (TFOs), the novel naphthalimide TINAs show extraordinary high thermal stability in Hoogsteen‐type triplexes and duplexes with high discrimination of mismatch strands. DNA Strands containing the intercalator Y show higher thermal triplex stability than DNA strands containing the intercalator Z . This observation can be explained by the ionic interaction of the protonated dimethylamino group under physiological conditions, targeting the negatively charged phosphate backbone of the duplex. This interaction leads to an extra binding mode between the TFO and the duplex, in agreement with molecular‐modeling studies. We believe that this is the first example of an intercalator linking the TFO to the phosphate backbone of the duplex by an ionic interaction, which is a promising tool to achieve a higher triplex stability.  相似文献   

11.
Oligonucleotides containing 7‐deaza‐2′‐deoxyinosine derivatives bearing 7‐halogen substituents or 7‐alkynyl groups were prepared. For this, the phosphoramidites 2b – 2g containing 7‐substituted 7‐deaza‐2′‐deoxyinosine analogues 1b – 1g were synthesized (Scheme 2). Hybridization experiments with modified oligonucleotides demonstrate that all 2′‐deoxyinosine derivatives show ambiguous base pairing, as 2′‐deoxyinosine does. The duplex stability decreases in the order Cd>Ad>Td>Gd when 2b – 2g pair with these canonical nucleosides (Table 6). The self‐complementary duplexes 5′‐d(F7c7I‐C)6, d(Br7c7I‐C)6, and d(I7c7I‐C)6 are more stable than the parent duplex d(c7I‐C)6 (Table 7). An oligonucleotide containing the octa‐1,7‐diyn‐1‐yl derivative 1g , i.e., 27 , was functionalized with the nonfluorescent 3‐azido‐7‐hydroxycoumarin ( 28 ) by the Huisgen–Sharpless–Meldal cycloaddition ‘click’ reaction to afford the highly fluorescent oligonucleotide conjugate 29 (Scheme 3). Consequently, oligonucleotides incorporating the derivative 1g bearing a terminal C?C bond show a number of favorable properties: i) it is possible to activate them by labeling with reporter molecules employing the ‘click’ chemistry. ii) Space demanding residues introduced in the 7‐position of the 7‐deazapurine base does not interfere with duplex structure and stability (Table 8). iii) The ambiguous pairing character of the nucleobase makes them universal probes for numerous applications in oligonucleotide chemistry, molecular biology, and nanobiotechnology.  相似文献   

12.
We have designed and synthesised a double‐headed nucleotide that presents two nucleobases in the interior of a dsDNA duplex. This nucleotide recognises and forms Watson–Crick base pairs with two complementary adenosines in a Watson–Crick framework. Furthermore, with judicious positioning in complementary strands, the nucleotide recognises itself through the formation of a T:T base pair. Thus, two novel nucleic acid motifs can be defined by using our double‐headed nucleotide. Both motifs were characterised by UV melting experiments, CD and NMR spectroscopy and molecular dynamics simulations. Both motifs leave the thermostability of the native dsDNA duplex largely unaltered. Molecular dynamics calculations showed that the double‐headed nucleotides are accommodated in the dsDNA by entirely local perturbations and that the modified duplexes retain an overall B‐type geometry with the dsDNA unwound by around 25 or 60°, respectively, in each of the modified motifs. Both motifs can be accommodated twice in a dsDNA duplex without incurring any loss of stability and extrapolating from this observation and the results of modelling, it is conceivable that both can be multiplied several times within a dsDNA duplex. These new motifs extend the DNA recognition repertoire and may form the basis for a complete series of double‐headed nucleotides based on all 16 base combinations of the four natural nucleobases. In addition, both motifs can be used in the design of nanoscale DNA structures in which a specific duplex twist is required.  相似文献   

13.
Recent experimental studies on the Watson–Crick type base pairing of triazine and aminopyrimidine derivatives suggest that acid/base properties of the constituent bases might be related to the duplex stabilities measured in solution. Herein we use high‐level quantum chemical calculations and molecular dynamics simulations to evaluate the base pairing and stacking interactions of seven selected base pairs, which are common in that they are stabilized by two N? H???O hydrogen bonds separated by one N? H???N hydrogen bond. We show that neither the base pairing nor the base stacking interaction energies correlate with the reported pKa data of the bases and the melting points of the duplexes. This suggests that the experimentally observed correlation between the melting point data of the duplexes and the pKa values of the constituent bases is not rooted in the intrinsic base pairing and stacking properties. The physical chemistry origin of the observed experimental correlation thus remains unexplained and requires further investigations. In addition, since our calculations are carried out with extrapolation to the complete basis set of atomic orbitals and with inclusion of higher electron correlation effects, they provide reference data for stacking and base pairing energies of non‐natural bases.  相似文献   

14.
The protected hydrazide‐linked uracil‐ and adenine‐derived tetranucleoside analogues 17, 19 , and 21 were synthesized in solution by coupling the dimeric hydrazines 6 and 10 with the carboxylic acids 7, 11 , and 16 . These hydrazines and acids were obtained by partially deprotecting the hydrazines 5, 9 , and 15 , and these were prepared by coupling the hydrazines 3 and 14 with the carboxylic acids 4 and 8 . The crystal structure analysis of the fully protected UU dimer 5 showed the formation of an antiparallel cyclic duplex with the uracil units H‐bonded via H? N(3) and O?C(2). Stacking interactions were observed between the uracil units with a buckle twist of 30.9°, and between the uracil unit II and the fluoren‐9‐yl group of Fmoc (=9H‐fluoren‐9‐yl)methoxycarbonyl). The hydrazide H? N(3′) and the C?O group of Fmoc form an intramolecular H‐bond. The uracil‐ and adenine‐derived, water‐soluble hydrazide‐linked self‐complementary octamers 23 – 32 and the non‐self‐complementary uracil derived decamer 33 were obtained by coupling the carboxylic acids 4 and 8 on a solid support. 1H‐NMR Analysis in CDCl3, mixtures of CDCl3 and (D6)DMSO, and (D8)THF showed that the partially deprotected dimers 5, 6, 12 , and 13 form weakly associated linear duplexes. The partially deprotected tetramers 17 and 18 do not associate. The hydrazide‐linked octamers 23 – 32 do not stack in aqueous solution, and the non‐self‐complementary decamer 33 does not stack with the complementary strands of DNA 43 and RNA 42 . The Cbz‐protected amide‐linked octamers 51 – 56 derived from uracil, adenine, cytosine, and guanine were obtained as the main products by solid‐phase synthesis from the carboxylic acids 46 – 49 . The fully deprotected amide‐linked octamers proved insoluble, and could neither be purified nor analysed.  相似文献   

15.
Here, we describe the synthesis and incorporation of the nucleoside base analogue C-deoxyribonucleoside 3 carrying thiophenol into DNA. The 1′-β compound 3 was synthesized by Friedel-Crafts alkylation, followed by deprotection. The coupling reaction with 3,5-ditoluoyl-1-α/β-methoxy-2-deoxy-d-ribose and diphenyldisulfide in the presence of SnCl4 afforded the α/β mixture 2 (β/α=2.8), and the β-form was separated by silica gel chromatography. After formation of the phosphoramidite derivative, the C-nucleoside 3 was incorporated into DNA. When the mercapto-bases were incorporated into complementary singled-stranded (ss) DNAs, the resulting duplex displayed high thermal stabilization on treatment with bubbling O2 (Tm 73 °C), but was destabilized in the presence of mercaptoethanol (Tm 33 °C). CD spectra showed that the duplex had a right-handed double-stranded structure. Imino proton NMR studies of temperature stability suggested that the strength of hydrogen bonding around the mercapto C-nucleoside was larger when treated with bubbling O2 than when in treated with reducing agent. Thus, formation of the base-to-base disulfide bond increased the stability of the duplex; correspondingly, reduction of the disulfide to two thiol bases destabilized the DNA reversibly. The duplex-forming disulfide base pair showed resistance to exonulease III. The present strategy could be used to introduce new functionalities into cells and novel biomaterials.  相似文献   

16.
Both α and β anomers of an acetophenone C-nucleoside were synthesized and incorporated in the middle of short oligodeoxynucleotides. The ketone oligonucleotides were converted to 15N-labelled oxime oligonucleotides by treatment with 15N-hydroxylamine and, finally, cyclopalladated by treatment with lithium tetrachloropalladate. Comparison of the UV melting profiles of duplexes bearing the β anomer of either the palladacyclic or the metal-free oxime C-nucleoside suggested formation of a stable Pd(II)-mediated base pair, especially with adenine or thymine as the base pairing partner. Melting profiles of the corresponding duplexes bearing the α anomer were much more convoluted, precluding meaningful comparison. 15N NMR spectra were obtained for the β anomeric oxime oligonucleotide as well as its palladacyclic derivative but the signals unfortunately diminished below detection limit when the latter was hybridized with a complementary strand placing a 15N3-labelled thymine opposite to the palladacyclic residue.  相似文献   

17.
The pairing propensity of new DNA analogues with a phosphinato group between O−C(3′) and a newly introduced OCH2 group at C(8) and C(6) of 2′‐deoxyadenosine and 2′‐deoxyuridine, respectively, was evaluated by force‐field calculations and Maruzen model studies. These studies suggest that these analogues may form autonomous pairing systems, and that the incorporation of single modified units into DNA 14mers is compatible with duplex formation. To evaluate the incorporation, we prepared the required phosphoramidites 3 and 4 from 2′‐deoxyadenosine and 2′‐deoxyuridine, respectively. The phosphoramidite 5 was similarly prepared to estimate the influence of a CH2OH group at C(8) on the duplex stability. The modified 14‐mers 6 – 9 were prepared by solid‐phase synthesis. Pairing studies show a decrease of the melting temperature by 2.5° for the duplex 13 ⋅ 9 , and of 6 – 8° for the duplexes 10 ⋅ 6 , 11 ⋅ 6 , 13 ⋅ 7 , and 14 ⋅ 8 , as compared to the unmodified duplexes.  相似文献   

18.
Janus bases are heterocyclic nucleic acid base analogs that present two different faces able to simultaneously hydrogen bond to nucleosides that form Watson–Crick base pairs. The synthesis of a Janus‐AT nucleotide analogue, N JAT , that has an additional endocyclic ring nitrogen and is thus more capable of efficiently discriminating T/A over G/C bases when base‐pairing in a standard duplex‐DNA context is described. Conversion to a phosphoramidite ultimately afforded incorporation into an oligonucleotide. In contrast to the first generation of carbocyclic Janus heterocycles, it remains in its unprotonated state at physiological pH and, therefore, forms very stable Watson–Crick base pairs with either A or T bases. Biophysical and computational methods indicate that N JAT is an improved candidate for sequence‐specific genome targeting.  相似文献   

19.
Oligonucleotides that hybridize to modified DNA are useful chemical tools to probe the noncovalent interactions that stabilize DNA duplexes. In an effort to better understand the interactions that influence the specificity of hybridization probes for O6‐alkylguanine lesions, we examined a series of synthetic nucleoside analogues (BIM, Benzi, and Peri) with respect to their ability to stabilize duplex DNA comprised of native or damaged DNA oligonucleotides. The base‐modified nucleoside analogues contained systematically varied hydrogen‐bonding and π‐stacking properties. The nucleoside probes were incorporated into DNA and paired opposite canonical bases (A, T, C, or G), O6‐methylguanine (O6‐MeG), O6‐benzylguanine (O6‐BnG), or a stable abasic site analogue (tetrahydrofuran, THF). On the basis of the free energy of duplex formation, the highest degree of stabilization was observed when Peri was paired opposite O6‐MeG. The thermodynamic data suggest that the smaller probes stabilize DNA duplexes more through hydrogen bonding, whereas the larger probes, with a greater capacity to π stack, contribute to duplex stabilization more on the basis of base stacking. These results demonstrate that increased helix stability could be achieved when BIM, Benzi, or Peri were paired opposite damage‐containing DNA rather than unmodified DNA (that is, O6‐MeG rather than G). This knowledge is expected to be useful in the design and development of nucleoside analogues for uses in DNA‐based technologies.  相似文献   

20.
In this study, we propose that three consecutive cationic p‐methylstilbazoles tethered on D ‐threoninols ( Z residues) at 5′ termini act as a unique “glue” connecting DNA duplexes by their interstrand cluster formation. Interstrand clustering of p‐methylstilbazoles ( ZZZ triplets) induces narrowing and hypsochromic shift of bands at 350 nm, which can be assigned to the absorption of p‐methylstilbazole. However, single‐stranded DNA conjugates involving a ZZZ triplet at the 5′ terminus of 8‐mer native nucleotides is found not to induce such large spectral changes, which implies that the intrinsic self‐assembling property of ZZZ triplets is weak. Interestingly, when this conjugate is hybridized with a complementary 8‐mer native oligonucleotide, a remarkable spectral change is observed, indicating the dimerization of a duplex through the interstrand clustering of ZZZ triplets. Dimerization of the duplex is also evidenced by cold‐spray ionization mass spectrometry. This interstrand clustering is observed only when a ZZZ triplet is tethered to a 5′ rather than 3′ terminus. Furthermore, the stability of the interstrand cluster increases by increasing the number of nucleobases of the DNA portion, and when mismatched base pairs are incorporated or when a base next to the Z residue is deleted, the stability substantially drops. When we apply the ZZZ triplet to the formation of a nanowire using two complementary DNA conjugates, each of which has a ZZZ triplet at the 5′ termini as overhang, we demonstrate the successful formation of a nanowire by native PAGE analysis. Since native sticky ends that have three nucleotides do not serve as “glue”, ZZZ triplets with their unique glue‐like properties are prime candidates for constructing DNA‐based nanoarchitectures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号