首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new concept is described for monitoring a biomolecule with a sensor having an enzyme entrapped in a conducting polymer. This is based on the sensitivity of the electroactive polymer itself to changes of pH in solution. The concept has been investigated for a glucose sensor with glucose oxidase (GOD) immobilized in a polypyrrole (PPy) layer on an inert platinum electrode. Measurements with a Pt/PPy/GOD electrode for glucose concentrations in the physiological range gave a linear correlation with logarithm of concentration over one decade with a satisfactory dynamic response. There was practically no change of slope or range of linear response to glucose after several days of use; this was in contrast to the amperometric response of the detector when there was about a 50% loss of sensitivity.  相似文献   

2.
Aligned carbon nanotubes (ACNTs) electrode has been developed for the direct protein electrochemistry and enzyme-biosensor study involving two types of nanoparticles. Pt nanoparticles (Ptnano) were electro-modified on the ACNTs’ each tube, greatly increasing the electrode surface area for locating protein and also its electronic transfer ability. Glucose oxidase (GOD) with chitosan (CS) and CdS nanoparticles electrochemically coated on each tube of ACNTs–Ptnano by the electrodeposition reaction of CS when pH value passing its pKa. The CdS nanoparticles between ACNTs electrode and GOD have stimulated the GOD’s direct electron transfer during its redox reaction of FAD/FADH2. The CS–GOD–CdS/ACNTs–Ptnano electrode also offer sensitive response to the substrate of glucose with detection limit of 46.8 μM (S/N = 3) and apparent Michaelis–Menten constant of 11.86 mM.  相似文献   

3.
利用磷酸盐缓冲溶液中吡咯的电聚合,将葡萄糖氧化酶(GOD)包埋在聚吡咯(PPy)基质中以构成生物功能电极。讨论了溶液pH和聚合电位对酶固定化的影响,并用IR和交流阻抗谱对酶膜进行表征。GOD的固定化只有当pH>5.5时才能实现,由此推测酶是以带负电的粒子嵌入PPy的。交流阻抗谱表明这一电极具有有界多孔电极的特征。探索了酶与电子传递体Fe(CN)_6~(3-)同时固定化的可行性。电化学固定化的GOD保持其生物催化活性,酶反应表观上遵循Michealis-Menten动力学。  相似文献   

4.
生物功能电极 III. 葡萄糖氧化酶的电化学固定化研究   总被引:5,自引:4,他引:5  
利用磷酸盐缓冲溶液中吡咯的电聚合, 将葡萄糖氧化酶(GOD)包埋在聚吡咯(PPy)基质中以构成生物功能电极。讨论了溶液pH和聚合电位对酶固定化的影响, 并用IR和交流阻抗谱对酶膜进行表征。GOD的固定化只有当pH>5.5时才能实现, 由此推测酶是以带负电的粒子嵌入PPy的。交流阻抗谱表明这一电极具有有界多孔电极的特征。探索了酶与电子传递体Fe(CN)_6~(3-)同时固定化的可行性。电化学固定化的GOD保持其生物催化活性, 酶反应表观上遵循Michealis-Menten动力学。  相似文献   

5.
Platinum nanoparticles (Pt NPs) were deposited onto multi-walled carbon nanotubes (MWNTs) through direct chemical reduction without any other stabilizing agents. Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry were employed to characterize the morphology of the as-prepared nanocomposite (noted as Pt NPs-MWNTs) and further identify the Pt NPs on the surface of MWNTs. The nanocomposite demonstrated the ability to electrocatalyze the oxidation of hydrogen peroxide and substantially raises the response current. A sensitivity of 591.33 μA mM−1 cm−2 was obtained at Pt NPs-MWNTs modified electrode. Thus, we immobilized glucose oxidase (GOD) as a model enzyme on the nanocomposite-based electrode with a thin layer of Nafion to fabricate a glucose biosensor, which showed sensitive and fast response to glucose. The influence of the GOD loading was investigated and the biosensor with an enzyme loading concentration of 10 mg/mL shows optimal performance for glucose detection, that is, a detection limit of 3 μM and a response time of 3 s, respectively.  相似文献   

6.
IntroductionDirectelectrochemistryofenzymeshasarousedincreasinginterestofmanyresearchersasitisapreferablewayforproducingarealreagent1essbiosensor.Glucoseoxidase(GOD),beingaflavoprotein,iswell-knownduetoitswidespreaduseinthebiosensors'Recently,agreatnumberofpeoplehaveat-temptedtoachievedirectelectrontransferbetweenGODandvariouselec-trodes[l-19].Szucselal.determinedtheshapeandsizeoftheGODmoleculead-sorbedonagoldelectrodebyel1ipsometry['jandexamineddirectelectrontrans-ferbetweentheadsorbedenz…  相似文献   

7.
A mixed‐valence cluster of cobalt(II) hexacyanoferrate and fullerene C60‐enzyme‐based electrochemical glucose sensor was developed. A water insoluble fullerene C60‐glucose oxidase (C60‐GOD) was prepared and applied as an immobilized enzyme on a glassy carbon electrode with cobalt(II) hexacyanoferrate for analysis of glucose. The glucose in 0.1 M KCl/phosphate buffer solution at pH = 6 was measured with an applied electrode potential at 0.0 mV (vs Ag/AgCl reference electrode). The C60‐GOD‐based electrochemical glucose sensor exhibited efficient electro‐catalytic activity toward the liberated hydrogen peroxide and allowed cathodic detection of glucose. The C60‐GOD electrochemical glucose sensor also showed quite good selectivity to glucose with no interference from easily oxidizable biospecies, e.g. uric acid, ascorbic acid, cysteine, tyrosine, acetaminophen and galactose. The current of H2O2 reduced by cobalt(II) hexacyanoferrate was found to be proportional to the concentration of glucose in aqueous solutions. The immobilized C60‐GOD enzyme‐based glucose sensor exhibited a good linear response up to 8 mM glucose with a sensitivity of 5.60 × 102 nA/mM and a quite short response time of 5 sec. The C60‐GOD‐based glucose sensor also showed a good sensitivity with a detection limit of 1.6 × 10‐6 M and a high reproducibility with a relative standard deviation (RSD) of 4.26%. Effects of pH and temperature on the responses of the immobilized C60‐GOD/cobalt(II) hexacyanoferrate‐based electrochemical glucose sensor were also studied and discussed.  相似文献   

8.
A novel amperometric biosensor for glucose was developed by entrapping glucose oxidase (GOD) in a chitosan composite doped with ferrocene monocarboxylic acid‐aminated silica nanoparticles conjugate (FMC‐ASNPs) and multiwall carbon nanotubes (MWNTs). The entrapped FMC‐ASNPs conjugate performed excellent redox electrochemistry and the presence of MWNTs improved the conductivity of the composite film. This matrix showed a biocompatible microenvironment for retaining the native activity of the entrapped GOD and was in favor of the accessibility of substrate to the active site of GOD, thus the affinity to substrates is improved greatly. Under optimal conditions this biosensor was able to detect glucose with a detection limit of 10 μM (S/N=3) in the linear range of 0.04 to 6.5 mM. The proximity of these three components FMC‐ASNPs, MWNTs and GOD enhanced the electron transfer between the film and electrode. This composite film can be extended to immobilize other enzymes and biomolecules, which will greatly facilitate the development of biosensors and other bioelectrochemical devices.  相似文献   

9.
In the present study, a novel and ultrasensitive electrochemiluminescence (ECL) immunosensor based on luminol cathodic ECL was fabricated by using Au nanoparticles and Pt nanoparticles (nano-AuPt) electrodeposited on graphene–carbon nanotubes nanocomposite as platform for the detection of carcinoembryonic antigen (CEA). For this introduced immunosensor, graphene (GR) and single wall carbon nanotubes (CNTs) dispersed in chitosan (Chi-GR-CNTs) were firstly decorated on the bare gold electrode (GE) surface. Then nano-AuPt were electrodeposited (DpAu-Pt) on the Chi-GR-CNTs modified electrode. Subsequently, glucose oxidase (GOD) was employed to block the non-specific sites of electrode surface. When glucose was present in the working buffer solution, GOD immediately catalyzed the oxidation of glucose to in situ generate hydrogen peroxide (H2O2), which could subsequently promote the oxidation of luminol with an amplified cathodic ECL signal. The proposed immunosensor was performed at low potential (−0.1 to 0.4 V) and low concentration of luminol. The CEA was determined in the range of 0.1 pg mL−1 to 40 ng mL−1 with a limit of detection down to 0.03 pg mL−1 (S N−1 = 3). Moreover, with excellent sensitivity, selectivity, stability and simplicity, the as-proposed luminol-based ECL immunosensor provided great potential in clinical applications.  相似文献   

10.
A novel amperometric biosensor utilizing two enzymes, glucose oxidase (GOD) and horseradish peroxidase (HRP), was developed for the cathodic detection of glucose. The glucose biosensor was constructed by electrochemical formation of a polypyrrole (PPy) membrane in the presence of GOD on the surface of a HRP-modified sol-gel derived-mediated ceramic carbon electrode. Ferrocenecarboxylic acid (FCA) was used as mediator to transfer electron between enzyme and electrode. In the hetero-bilayer configuration of electrode, all enzymes were well immobilized in electrode matrices and showed favorable enzymatic activities. The amperometric detection of glucose was carried out at +0.16 V (versus saturated calomel reference electrode (SCE)) in 0.1 M phosphate buffer solution (pH 6.9) with a linear response range between 8.0×10−5 and 1.3×10−3 M glucose. The biosensor showed a good suppression of interference in the amperometric detection.  相似文献   

11.
Sulfonated graphene nanosheet/gold nanoparticle (SGN/Au) hybrid was synthesized by electrostatic self-assembly of anionic SGN and positively charged gold nanoparticles. Due to the well-dispersivity of SGN in aqueous solution and its adequate negative charge, Au nanoparticles were assembled uniformly on graphene surface with high distribution. With the advantages of both graphene and Au nanoparticles, SGN/Au hybrid showed enhanced electrocatalytic activity towards O2 reduction. Furthermore, it provided a conductive and favorable microenvironment for the glucose oxidase (GOD) immobilization and thus promoted its direct electron transfer at the glassy carbon electrode. Based on the consumption of O2 caused by glucose at the interface of GOD electrode modified with SGN/Au hybrid, the modified electrode displayed satisfactory analytical performance, including high sensitivity (14.55 μA mM?1 cm?2), low detection limit (0.2 mM), an acceptable linear range from 2 to 16 mM, and also the prevention from the interference of some species. These results indicated that the prepared SGN/Au hybrid is a promising candidate material for high-performance glucose biosensor.  相似文献   

12.
Redox enzyme – glucose oxidase E.C. 1.1.3.4 from Penecillum vitale (GOx) – initiated polypyrrole (Ppy) synthesis was applied for the formation of polypyrrole based nanoparticles. The increase in optical absorbance at λ = 460 nm was exploited for the monitoring of polypyrrole polymerisation process. The shape and size of the formed Ppy nanoparticles was also monitored by means of contact mode AFM. The highest increase in the diameter of the formed Ppy nanoparticles was detected during 15-day period. AFM imaging was performed in contact mode to investigate the shape and flexibility of particles deposited on the SiO2 and Pt surfaces. Contact mode AFM investigations allowed us to conclude that after drying at 50 °C the formed Ppy particles are more flexibly deposited on the Pt electrode if compared to those deposited on the SiO2 substrate. The application of well-shaped Ppy nanoparticles in biomedicine, chromatography and bioanalysis may be predicted.  相似文献   

13.
The direct electrochemistry of glucose oxidase (GOD) immobilized on the designed titanium carbide‐Au nanoparticles‐fullerene C60 composite film modified glassy carbon electrode (TiC‐AuNPs‐C60/GCE) and its biosensing for glucose were investigated. UV‐visible and Fourier‐transform infrared spectra of the resulting GOD/TiC‐AuNPs‐C60 composite film suggested that the immobilized GOD retained its original structure. The direct electron transfer behaviors of immobilized GOD at the GOD/TiC‐AuNPs‐C60/GCE were investigated by cyclic voltammetry in which a pair of well‐defined, quasi‐reversible redox peaks with the formal potential (E0′) of ‐0.484 V (vs. SCE) in phosphate buffer solution (0.05 M, pH 7.0) at the scan rate of 100 mV·s?1 were obtained. The proposed GOD modified electrode exhibited an excellent electrocatalytic activity to the reduction of glucose, and the currents of glucose reduction peak were linearly related to glucose concentration in a wider linearity range from 5.0 × 10?6 to 1.6 × 10?4 M with a correlation coefficient of 0.9965 and a detection limit of 2.0 × 10?6 M (S/N = 3). The sensitivity and the apparent Michaelis‐Menten constant (KMapp) were determined to be 149.3 μA·mM?1·cm?2 and 6.2 × 10?5 M, respectively. Thus, the protocol will have potential application in studying the electron transfer of enzyme and the design of novel electrochemical biosensors.  相似文献   

14.
Three cholesterol biosensor configurations based on the formation of a layer of Prussian-Blue (PB) on a Pt electrode for the electrocatalytic detection of the H2O2 generated during the enzymatic reaction of cholesterol with cholesterol oxidase (ChOx) were constructed. The enzyme was entrapped within a polypyrrole (PPy) layer electropolymerized onto the PB film. The influence of the formation of self-assembled monolayers (SAMs) on the Pt surface on the adherence and stability of the PB layer and the formation of an outer layer of nafion (Nf) as a means of improving selectivity were both studied. A comparative study was made of the analytical properties of the biosensors corresponding to the three configurations named: Pt/PB/PPy-ChOx, Pt/SAM/PB/PPy-ChOx and Pt/SAM/PB/PPy-ChOx/Nf. The sensitivity (from 600 to 8500 nA mM−1 cm−2) and selectivity of the developed biosensors permitted the determination of the cholesterol content in reference and synthetic serum samples. The detection limit for the Pt/SAM/PB/PPy-ChOx/Nf biosensor was 8 μM. Formation of the SAM on the electrode surface and covering with a Nf film considerably improved the stability and lifetime of the biosensor based on the catalytic effect of the PB layer (as the PB layer was retained longer on the electrode), and the Nf layer protects the enzyme from the external flowing solutions. Lifetime is up to 25 days of use. The formation of the SAM also has an effect on the charge transfer and the formation of the PB layer.  相似文献   

15.
《Analytical letters》2012,45(6):839-855
Abstract

A glucose electrode was constructed by adsorbing glucose oxidase (GOD) on a modified electrode for H2 O 2 oxidation, consisting of Pd/Au sputtered on graphite. Maximally, 0.8 U cm?2 of GOD could be adsorbed. The electrode was used in a f.i.a. manifold for determination of glucose. Linear calibration curves were obtained in the concentration range 3. 10?6 4. 10?3 mol L?1 glucose. The applied potentials for glucose determination were + 300 mV vs. Ag/AgCl at pH 8.0, + 350 mV at pH 7.0, + 400 mV at pH 6.0 and + 500 mV at pH 5.0. The activity vs. pH profile of adsorbed GOD was broad having an optimum between pH 5 and 6. The apparent kinetic parameters for adsorbed GOD, KM app and imax, were found to be 50 mM and 160 uA at optimal pH.  相似文献   

16.
We have used solvent casting techniques to immobilise glucose oxidase (GOD) within unplasticised and plasticised poly(vinyl chloride) (PVC) matrices. The plasticisers studied were the cationic surfactant, tricaprylmethylammonium chloride (Aliquat 336s), the anionic surfactant bis(2-ethylhexyl) hydrogenphosphate (BEP) and the lipid, isopropylmyristate (IPM). The activity of the enzyme-membrane was tested by amperometric electrode. Changes in enzyme-membrane electrode response are rationalised on the basis of membrane permselective properties. The Aliquat and IPM modified PVC membranes gave amplified signals due to better retention and subsequent concentration of the H2O2 signal species. Effectively, less was being lost to the bulk solution. In the case of the BEP-modified membrane, while there was a linear step change in response up to 50 mM, at higher concentrations, responses did not reach steady-state; they were characterised by an upward drift in response of 0.050 nA/min. This characteristic is thought to be due to a build up of gluconic acid resulting in a pH reduction in the membrane microenvironment and hydrogen bonding between neighbouring BEP molecules. Under these conditions, we have previously shown that the membrane permeability to hydrophilic species is attenuated and it is tentatively suggested that the upward drift due to the build up of H2O2 on the electrode side with less permeating through the acidified membrane into bulk solution.The results were compared against using variously plasticised PVC (but no enzyme entrapped) as an outer membrane of a classical dual-membrane glucose enzyme electrode construct. In the latter case, the enzyme was chemically crosslinked between the membranes using glutaraldehyde.  相似文献   

17.
A novel electrochemical platform based on nickel oxide (NiO) nanoparticles and TiO2–graphene (TiO2–Gr) was developed for the direct electrochemistry of glucose oxidase (GOD). The electrochemical behavior of the sensor was studied using cyclic voltammetry and chronoamperometry. The experimental results demonstrated that the nanocomposite well retained the activity of GOD and the modified electrode GOD/NiO/TiO2–Gr/GCE exhibited excellent electrocatalytic activity toward the redox of GOD as evidenced by the significant enhancement of redox peak currents in comparison with bare GCE. The biosensor responded linearly to glucose in the range of 1.0–12.0?mM, with a sensitivity of 4.129?μA?mM?1 and a detection limit of 1.2?×?10?6?M under optimized conditions. The response time of the biosensor was 3?s. In addition, the developed biosensor possessed good reproducibility and stability, and there was negligible interference from other electroactive components.  相似文献   

18.
用亲水金、憎水二氧化硅纳米颗粒固定葡萄糖氧化酶(GOD),采用聚乙烯醇缩丁醛(PVB)为辅助固酶膜基质来制备葡萄糖生物传感器,并考察了亲水金、憎水二氧化硅纳米颗粒对酶电极电流响应的影响.实验表明,引入纳米粒子可显著增强电极响应灵敏度.并对两种不同性质纳米颗粒所起作用的可能机理进行讨论,从理论和实验上证明了纳米颗粒对固定酶的作用.为制备有实用价值的葡萄糖生物传感器提供了可供参考的实验和理论依据.  相似文献   

19.
纳米级微带金电极上葡萄糖氧化酶的固定.性质及应用   总被引:5,自引:0,他引:5  
实现了葡萄糖氧化酶以及葡萄糖氧化酶和电子传递媒体Fe(CN)^3^-~6同时在纳米级微带电极上的固定,用红外光谱和循环伏安对GOD/PPy微电极进行了表征, 研究了微带金电极上聚吡咯恒电位形成过程的动力学及葡萄糖氧化酶对其动力学过程的影响,探讨了微酶电极GOD/Fe(CN)^3^-~6/PPy对葡萄糖氧化的催化作用, 考察了PPy膜厚度和溶液中氧的存在对GOD/Fe(CN)^3^-~6/PPy微电极测定葡萄糖的影响.  相似文献   

20.
A mediator-free glucose biosensor, termed a “third-generation biosensor,” was fabricated by immobilizing glucose oxidase (GOD) directly onto an oxidized boron-doped diamond (BDD) electrode. The surface of the oxidized BDD electrode possesses carboxyl groups (as shown by Raman spectra) which covalently cross-link with GOD through glutaraldehyde. Glucose was determined in the absence of a mediator used to transfer electrons between the electrode and enzyme. O2 has no effect on the electron transfer. The effects of experimental variables (applied potential, pH and cross-link time) were investigated in order to optimize the analytical performance of the amperometric detection method. The resulting biosensor exhibited fast amperometric response (less than 5 s) to glucose. The biosensor provided a linear response to glucose over the range 6.67×10−5 to 2×10−3 mol/L, with a detection limit of 2.31×10−5 mol/L. The lifetime, reproducibility and measurement repeatability were evaluated and satisfactory results were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号