首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
制备了离子液体[BMIM]PF6修饰碳糊电极(CILE), 并对其形貌和电化学行为进行了表征. 采用涂布法利用壳聚糖-皂土有机-无机复合膜将血红蛋白(Hb)固定于CILE电极表面, 利用紫外可见光谱、红外光谱和电化学方法等手段对包埋于膜内的Hb的性质进行了表征. 结果表明, Hb在薄膜内保持了其原始构象与生物活性, 循环伏安实验表明, 在pH=7.0的Britton-Robinson (B-R)缓冲液中, Hb表现出一对峰形良好的准可逆氧化还原峰, 为Hb Fe(III)/Fe(II)电对的特征峰, 对其直接电化学行为进行了研究, 求出式电位为-0.352 V(vs SCE), 电子转移数为0.885, 电荷传递系数为0.578, 表观异相电子转移速率常数为0.149 s-1.  相似文献   

2.
孙伟  高瑞芳  毕瑞锋  焦奎 《分析化学》2007,35(4):567-570
以室温离子液体(RTIL)六氟磷酸正丁基吡啶(BPPF6)代替传统固体石蜡为粘合剂与石墨粉相混合制备了一种新型的离子液体修饰碳糊电极(RTIL/CPE)。优化出制备电极时石墨与BPPF6的比例为3∶1(w/w),采用扫描电子显微镜对其表面形貌进行了表征,以铁氰化钾为电化学探针对RTIL/CPE的电化学行为进行了研究,并与传统石蜡碳糊电极(CPE)进行了比较。结果表明由于BPPF6具有较高的导电性,使RTIL/CPE比CPE具有更高的导电效率,铁氰化钾在电极上的可逆性变好,ΔEp值为64mV,峰电流响应增加3.5倍,电极过程由吸附控制变为扩散控制,根据计时库仑法求解出铁氰化钾的扩散系数为1.39×10-4cm2/s。  相似文献   

3.
《Electroanalysis》2005,17(19):1740-1745
A p‐chloranil modified carbon paste electrode was constructed and the electrochemical behavior of this electrode was studied in the aqueous solution with different pH. From the E1/2–pH diagram for this compound the values of formal potential E0' and pKa of some different redox and acid‐base couples depending on the solution pH were estimated. The diffusion coefficient, D, value for p‐chloranil was estimated 1.5×10?7 cm2 s?1. It has been shown by direct current cyclic voltammetry and double potential step chronoamperometry, that this p‐chloranil incorporated carbon paste electrode, can catalyze the oxidation of ascorbic acid in the aqueous buffered solution. Under the optimum condition (pH 7.00), the oxidation of ascorbic acid at the surface of such an electrode occurs at a potential about 325 mV less positive than that at an unmodified carbon past electrode. The catalytic oxidation peak currents was linearly dependent on the ascorbic acid concentration and a linear calibration curve was obtained in the range of 7×10?5 M–4×10?3 M of ascorbic acid with a correlation coefficient of 0.9998. The limit of detection (3σ) was determined as 3.5×10 ?5 M. This method was used as simple, selective and precise voltammetric method for determination of ascorbic acid in pharmaceutical preparations.  相似文献   

4.
5.
A new hemoglobin (Hb) and room temperature ionic liquid modified carbon paste electrode was constructed by mixing Hb with 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIMPF6) and graphite powder together. The Hb modified carbon ionic liquid electrode (Hb‐CILE) was further characterized by FT‐IR spectra, scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). Hb in the carbon ionic liquid electrode remained its natural structure and showed good direct electrochemical behaviors. A pair of well‐defined quasireversible redox peaks appeared with the apparent standard potential (E′) as ?0.334 (vs. SCE) in pH 7.0 phosphate buffer solution (PBS). The electrochemical parameters such as the electron transfer number (n), the electron transfer coefficient (α) and the heterogeneous electron transfer kinetic constant (ks) of the electrode reaction were calculated with the results as 1.2, 0.465 and 0.434 s?1, respectively. The fabricated Hb‐CILE exhibited excellent electrocatalytic activity to the reduction of H2O2. The calibration range for H2O2 quantitation was between 8.0×10?6 mol/L and 2.8×10?4 mol/L with the linear regression equation as Iss (μA)=0.12 C (μmol/L)+0.73 (n=18, γ=0.997) and the detection limit as 1.0×10?6 mol/L (3σ). The apparent Michaelis–Menten constant (KMapp) of Hb in the modified electrode was estimated to be 1.103 mmol/L. The surface of this electrochemical sensor can be renewed by a simple polishing step and showed good reproducibility.  相似文献   

6.
在pH=9的磷酸盐缓冲溶液(PBS)中,用麦饭石修饰碳糊电极循环伏安法研究了克林霉素的电化学性质,并讨论了影响克林霉素测定的各种因素,得到了其测定的最佳实验条件。克林霉素的氧化峰电位是0.80V,氧化峰电流与克林霉素的浓度在3.25×10-6~1.10×10-4 mol.L-1范围内呈良好的线性关系。该测定方法的检出限(S/N=3)为5.0×10-7 mol.L-1。用标准加入法测定回收率范围在94.9%~101.4%。克林霉素在0.80V处的氧化为1电子、1质子参加的受扩散控制的不可逆过程。克林霉素的电化学测定方法能很好地用于实际样品的测定而且结果与药典法一致。  相似文献   

7.
In this paper a room temperature ionic liquid 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIMPF6) was used as binder for the construction of carbon ionic liquid electrode (CILE) and a new electrochemical biosensor was developed for determination of H2O2 by immobilization of hemoglobin (Hb) in the composite film of Nafion/nano‐CaCO3 on the surface of CILE. The Hb modified electrode showed a pair of well‐defined, quasi‐reversible redox peaks with Epa and Epc as ?0.265 V and ?0.470 V (vs. SCE). The formal potential (E°′) was got by the midpoint of Epa and Epc as ?0.368 V, which was the characteristic of Hb Fe(III)/Fe(II) redox couples. The peak to peak separation was 205 mV in pH 7.0 Britton–Robinson (B–R) buffer solution at the scan rate of 100 mV/s. The direct electrochemistry of Hb in the film was carefully investigated and the electrochemical parameters of Hb on the modified electrode were calculated as α=0.487 and ks=0.128 s?1. The Nafion/nano‐CaCO3/Hb film electrode showed good electrocatalysis to the reduction of H2O2 in the linear range from 8.0 to 240.0 μmol/L and the detection limit as 5.0 μmol/L (3σ). The apparent Michaelis–Menten constant (KMapp) was estimated to be 65.7 μmol/L. UV‐vis absorption spectroscopy and FT‐IR spectroscopy showed that Hb in the Nafion/nano‐CaCO3 composite film could retain its native structure.  相似文献   

8.
The much‐enhanced electrochemical responses of potassium ferricyanide and methylene blue (MB) were firstly explored at the glassy carbon electrode modified with single‐walled carbon nanotubes (SWNT/GCE), indicating the distinct electrochemical activity of SWNTs towards electroactive molecules. A hydrophobic room temperature ionic liquid (RTIL), 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIMPF6), was used as electrode modification material, which presented wide electrochemical windows, proton permeation and selective extraction ability. In consideration with the advantages of SWNTs and RTIL in detecting target molecules (TMs), a novel strategy of ‘sandwich–type’ electrode was established with TMs confined by RTIL between the SWNT/GCE and the RTIL membrane. The strategy was used for electrochemical detection of ascorbic acid (AA) and dopamine (DA), and detection limits of 400 and 80 fmol could be obtained, respectively. The selective detection of DA in the presence of high amount of AA could also be realized. This protocol presented many attractive advantages towards voltammetric detection of TMs, such as low sample demand, low cost, high sensitivity, and good stability.  相似文献   

9.
The voltammetric response of graphite or carbon nanotube paste electrodes, which incorporate the room temperature ionic liquid, N‐butyl‐N‐methyl pyrrolidinium bis(trifluoromethylsulfonyl) imide or [C4mpyrr][NTf2], (RTIL‐CNTPE and RTIL‐CPE respectively) as the binder, towards anionic, cationic and neutral redox probes is examined and compared to conventional paste electrodes which use mineral oil as the binder. The RTIL paste electrodes are found to suffer from very large background currents due to capacitive charging. This is exacerbated further when CNTs are combined with RTILs in the paste. The large charging currents obscure any Faradaic processes of interest, especially at low analyte concentrations. By employing steady state voltammetry at a rotating disk electrode made of the RTIL pastes this problem can be overcome. This allows the electroanalytical properties of these interesting electrode substrates, which combine the attractive properties of CNTs with RTILs to be further explored and developed.  相似文献   

10.
The electrochemical behavior of D ‐penicillamine (D ‐PA) studied at the surface of ferrocene carboxylic acid modified carbon paste electrode (FCAMCPE) in aqueous media using cyclic voltammetry and double step potential chronoamperometry. It has been found that under optimum condition (pH 7.00), the oxidation of D ‐PA at surface of such an electrode is occurred about 420 mV less positive than that an unmodified carbon paste electrode (CPE). The catalytic oxidation peak current was linearly dependent on the D ‐PA concentration and a linear calibration curve was obtained in the ranges 7.5×10?5 M – 1.0×10?3 M and 6.5×10?6 M?1.0×10?4 M of D ‐PA with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods respectively. The detection limits (3σ) were determined as 6.04×10?5 M and 6.15×10?6 M. This method was also used for the determination of D ‐PA in pharmaceutical preparation (capsules) by standard addition method.  相似文献   

11.
用现场修饰方法制备了溴化十六烷基吡啶(CPB)修饰碳糊电极(CPB/CPE)。运用循环伏安法(cyclic voltammetry,CV)、电位阶跃计时电流法(chronoamperometry,CA)及电位阶跃计时库仑法(chronocoulometry,CC)法研究了多巴胺(DA)和抗坏血酸(AA)在裸碳糊(CPE)和CPB/CPE上的电化学行为,测得了动力学参数如电荷转移系数α,扩散系数D,反应级数和电极反应速率常数kf。研究结果表明CPB/CPE可用于AA和DA共存体系中DA的电化学选择性测定。  相似文献   

12.
《Analytical letters》2012,45(16):2618-2630
A carbon paste electrode (CPE), modified with novel hydroquinone/TiO2 nanoparticles, was designed and used for simultaneous determination of ascorbic acid (AA), uric acid (UA) and folic acid (FA). The magnitude of the peak current for modified TiO2-nanoparticle CPE (MTNCPE) increased sharply in the presence of ascorbic acid and was proportional to its concentration. A dynamic range of 1.0–1400.0 μM, with the detection limit of 6.4 × 10?7 M for AA, was obtained using the DPV technique (pH = 7.0). The prepared electrode was successfully applied for the determination of AA, UA, and FA in real samples.  相似文献   

13.
制备了碳纳米纤维修饰碳糊电极,并用于双酚A的高灵敏和高选择性电化学检测。碳纳米纤维材料经静电纺丝和碳化过程相结合制备而成,采用滴涂的方法修饰于碳糊电极表面制成电化学传感器。利用循环伏安法、交流阻抗法以及微分脉冲伏安法考察了传感器的性质及双酚A的电化学行为。结果表明,双酚A的峰电流响应与其浓度在0.8~50μmol/L之间呈良好的线性关系,检测限为0.1μmol/L。构建的电化学传感器用于环境水样中双酚A的检测具有较高的回收率。  相似文献   

14.
Uric acid (UA) was determined in the presence of ascorbic acid (AA) by using a carbon paste electrode modified superficially by a β‐cyclodextrin film (CPE/β‐CD). The surface carbon paste electrode was prepared applying a 30 cycles potential program and using a 1 M HClO4+0.01 M β‐CD electrolytic solution. The UA and AA solutions were used to evaluate the electrode selectivity and sensitivity by cyclic voltammetric and amperometric methods. In these experiments the detection limit for UA was (4.6±0.01)×10?6 M and the RSD calculated from the amperometric curves was 10%. From the data obtained it was possible to quantify UA in the urine and saliva samples. Selective detection of UA was improved by formation of an inclusion complex between β‐CD and UA. The results show that the CPE/β‐CD is a good candidate due to its selectivity and sensitivity in the UA determination in complex samples like the biological fluids.  相似文献   

15.
The electrochemical behavior of L ‐cysteine studied at the surface of ferrocenedicarboxylic acid modified carbon paste electrode (FDCMCPE) in aqueous media using cyclic voltammetry, differential pulse voltammetry and double potential step chronoamperometry. It has been found that under optimum condition (pH 8.00) in cyclic voltammetry, the oxidation of L ‐cysteine occurs at a potential about 200 mV less positive than that of an unmodified carbon paste electrode. The kinetic parameters such as electron transfer coefficient, α, and catalytic reaction rate constant, kh were also determined using electrochemical approaches. The electrocatalytic oxidation peak current of L ‐cysteine showed a linear dependent on the L ‐cysteine concentration and linear analytical curves were obtained in the ranges of 3.0×10?5 M–2.2×10?3 M and 1.5×10?5 M–3.2×10?3 M of L ‐cysteine concentration with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods respectively. The detection limits (3σ) were determined as 2.6×10?5 M and 1.4×10?6 M by CV and DPV methods.  相似文献   

16.
张亚  郑建斌 《中国化学》2007,25(11):1652-1657
An ionic liquid bulk-modified carbon paste electrode (M-CPE) has been fabricated by using 1-heptyl-3-methylimidazolium bromide as a modifier. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to evaluate the electrocatalytic activity of the proposed electrode by choosing p-aminophenol (p-AP) as a model compound. Both at a bare carbon paste electrode (CPE) and the M-CPE, p-AP yielded a pair of redox peaks in 0.1 mol·L^-1 phosphate buffer solution (PBS, pH 7.0). At the CPE, the peak-to-peak potential separation (AEp) was 0.233 V, while at the M-CPE the AEp was decreased to 0.105 V. Furthermore, the current response to p-AP at the M-CPE was 10.2 times of that at the CPE by DPV. The electron transfer rate constant (ks) ofp-AP at the M-CPE was 13.3 times of that at the CPE. Under the optimal condition, a linear dependence of the catalytic current versus p-AP concentration was obtained in the range of 2.0× 10^- 6 to 3.0× 10^- 4 mol·L^-1 with a detection limit of 6.0× 10^-7 mol·L^-1 by DPV. In addition, compared to other modified method the proposed electrode exhibited distinct advantages of simple prapartion, surface renewal, good reproducibility and good stability. It has been used to determine p-AP in simulated wastewater samples.  相似文献   

17.
The electrocatalytic oxidation of hydrazine at a carbon paste electrode spiked with acetylferrocene as a mediator was studied by cyclic voltammetry, differential pulse voltammetry, and chronoamperometry. In contrast to other ferrocenic compounds, acetylferrocene exhibits a chemical irreversible behavior, but it can act as an effective mediator for electrocatalytic oxidation of hydrazine, too. The heterogeneous electron transfer rate constant between acetylferrocene and the electrode substrate (carbon paste) and the diffusion coefficient of spiked acetylferrocene in silicon oil were estimated to be about 3.45×10?4 cm s?1 and 4.45×10?9 cm2 s?1, respectively. It has been found that under the optimum conditions (pH 7.5) the oxidation of hydrazine occurs at a potential of about 228 mV less positive than that of an unmodified carbon paste electrode. The catalytic oxidation peak current of hydrazine was linearly dependent on its concentration and the obtained linear range was 3.09×10?5 M–1.03×10?3 M. The detection limit (2σ) has been determined as 2.7×10?5 M by cyclic voltammetry. Also, the peak current was increased linearly with the concentration of hydrazine in the range of 1×10?5 M–1×10?3 M by differential pulse voltammetry with a detection limit of 1×10?5 M. This catalytic oxidation of hydrazine has been applied as a selective, simple, and precise new method for the determination of hydrazine in water samples.  相似文献   

18.
采用Hummers法制备了纳米石墨烯,并将该纳米材料分散在蒸馏水中得到悬浮液,取5μL的悬浮液滴涂在玻碳电极表面,制备石墨烯修饰电极。用循环伏安法研究了在pH 4.0磷酸盐电解质中,在-0.4~0.8V(vs.Ag/AgCl)电位范围内,抗坏血酸在修饰电极上的电化学行为。结果表明:抗坏血酸在修饰电极上在0.173V处可见明显的氧化峰,且氧化峰电流显著高于在裸玻碳电极上的氧化峰电流;并可有效排除肾上腺素、尿酸、多巴胺等物质的干扰。据此提出了用循环伏安法测定抗坏血酸的方法。抗坏血酸的线性范围为8.00×10-6~1.0×10-3 mol.L-1,检出限(3S/N)为1.0×10-7 mol.L-1。方法用于维生素C片的分析,回收率在96.3%~104.4%之间。  相似文献   

19.
《Electroanalysis》2006,18(11):1075-1080
The voltammetric behavior of uric acid (UA) has been studied at a multiwalled carbon nanotube‐ionic liquid (i.e., 1‐butyl‐3‐methylimidazolium hexafluorophosphate, BMIMPF6) paste coated glassy carbon electrode (MWNTs‐BMIMPF6/GC). It is found that UA can effectively accumulate at this electrode and cause a sensitive anodic peak at about 0.49 V (vs. SCE) in pH 4.0 phosphate buffer solutions. Experimental parameters influencing the response of the electrode, such as solution pH and accumulation time, are optimized for uric acid determination. Under the optimum conditions, the anodic peak current is linear to UA concentration in the range of 1.0×10?8 M to 1.0×10?6 M and 2.0×10?6 M to 2.0×10?5 M. The detection limit is 5.0×10?9 M for 180 s accumulation on open circuit. The electrode can be regenerated by successively cycling in a blank solution for about 3 min and exhibits good reproducibility. A 1.0×10?6 M UA solution is measured for eight times using the same electrode regenerated after every determination, and the relative standard deviation (RSD) of the peak current is 3.2%. As for different electrodes fabricated by the same way the RSD (i.e., the electrode to electrode deviation) is 4.2%(n=9). This method has been applied to the determination of UA in human urine samples, and the recoveries are 99%–100.6%. In addition, comparison is made between MWNTs‐BMIMPF6/GC and MWNTs/GC. Results show that the MWNTs‐BMIMPF6/GC exhibits higher sensitivity, selectivity and ratio of peak current to background current.  相似文献   

20.
用循环伏安法和线性扫描伏安法研究了头孢氨苄在碳糊电极上的电化学行为,考察了不同电解质溶液、pH以及扫描速率等的影响。实验表明:在2.0 mol·L-1HCl支持电解质中,头孢氨苄的降解产物在-0.45 V(vs.SCE)处的电化学还原反应为2电子与2质子参加的受吸附控制的不可逆过程。还原峰电流与头孢氨苄的浓度的平方根在1.8×10-8~3.0×10-4mol·L-1范围内呈良好的线性关系,回收率在95.7%~101.5%范围,检出限(S/N=3)为1.0×10-8mol·L-1。并探讨了头孢氨苄在电极上的反应机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号