首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Electroanalysis》2006,18(11):1097-1104
Copolymerization of an osmium(II) functionalized pyrrole moiety, osmium‐bis‐N,N'‐(2,2′‐bipyridyl)‐N‐(pyridine‐4‐ylmethyl‐(8‐pyrrole‐1yl–octyl)‐amine)chloride ( I ) with 3‐methylthiophene was carried out. The resulting conducting polymer film exhibited a clear redox couple associated with the Os3+/2+ response and the familiar conducting polymer backbone signature. The effect of film thickness upon the redox properties of the copolymer was investigated in organic electrolyte solutions. Scanning electron micrographs (SEM) along with energy dispersive X‐ray (EDX) spectra of the copolymerized films were undertaken, both after formation and redox cycling in neutral buffer solution. These clearly show that electrolyte is incorporated into the polymer film upon redox cycling through the Os3+/2+ redox system. The Os3+/2+ response associated with the copolymer was seen to be significantly altered in the presence of ascorbic acid both in acidic and neutral pH buffer solutions. This pointed to an electrocatalytic reaction between the ascorbic acid and the Os3+ form of the copolymer. Under acidic conditions the copolymer film exhibited a sensitivity of 1.76 (±0.05) μA/mM with a limit of detection (LOD) of 1.45 μM for ascorbic acid. Under neutral pH conditions the copolymer exhibited a sensitivity of 19.26 (±1.05) μA/mM with a limit of detection (LOD) of 1.28 μM for ascorbic acid.  相似文献   

2.
The mediation of electron‐transfer by oxo‐bridged dinuclear ruthenium ammine [(bpy)2(NH3)RuIII(µ‐O)RuIII(NH3)(bpy)2]4+ for the oxidation of glucose was investigated by cyclic voltammetry. These ruthenium (III) complexes exhibit appropriate redox potentials of 0.131–0.09 V vs. SCE to act as electron‐transfer mediators. The plot of anodic current vs. the glucose concentration was linear in the concentration range between 2.52×10?5 and 1.00×10?4 mol L?1. Moreover, the apparent Michaelis‐Menten kinetic (KMapp) and the catalytic (Kcat) constants were 8.757×10?6 mol L?1 and 1,956 s?1, respectively, demonstrating the efficiency of the ruthenium dinuclear oxo‐complex [(bpy)2(NH3)RuIII(µ‐O)RuIII(NH3)(bpy)2]4+ as mediator of redox electron‐transfer.  相似文献   

3.
A new class of ruthenium(II) polypyridine complexes with a series of D–π–A–π–D type (D=donor, A=acceptor) ligands was synthesized and characterized by 1H NMR spectroscopy, mass spectrometry, and elemental analysis. The photophysical and electrochemical properties of the complexes were also investigated. The newly synthesized ruthenium(II) polypyridine complexes were found to exhibit two intense absorption bands at both high‐energy (λ=333–369 nm) and low‐energy (λ=520–535 nm) regions. They are assigned as intraligand (IL) π→π* transitions of the bipyridine (bpy) and π‐conjugated bpy ligands, and IL charge‐transfer (CT) transitions from the donor to the acceptor moiety with mixing of dπ(RuII)→π*(bpy) and dπ(RuII)→π*(L) MLCT characters, respectively. In addition, all complexes were demonstrated to exhibit intense red emissions at approximately λ=727–744 nm in degassed dichloromethane at 298 K or in n‐butyronitrile glass at 77 K. Nanosecond transient absorption (TA) spectroscopy has also been carried out, establishing the presence of the charge‐separated state. In order to understand the electrochemical properties of the complexes, cyclic voltammetry has also been performed. Two quasi‐reversible oxidation couples and three quasi‐reversible reduction couples were observed. One of the ruthenium(II) complexes has been utilized in the fabrication of memory devices, in which an ON/OFF current ratio of over 104 was obtained.  相似文献   

4.
A ditopic benzobis(carbene) ligand precursor was prepared that contained a chelating pyridyl moiety to ensure co‐planarity of the carbene ligand and the coordination plane of a bound octahedral metal center. Bimetallic ruthenium complexes comprising this ditopic ligand [L4Ru‐C,N‐bbi‐C,N‐RuL4] were obtained by a transmetalation methodology (C,N‐bbi‐C,N=benzobis(N‐pyridyl‐N′‐methyl‐imidazolylidene). The two metal centers are electronically decoupled when the ruthenium is in a pseudotetrahedral geometry imparted by a cymene spectator ligand (L4=[(cym)Cl]). Ligand exchange of the Cl?/cymene ligands for two bipyridine or four MeCN ligands induced a change of the coordination geometry to octahedral. As a consequence, the ruthenium centers, separated through space by more than 10 Å, become electronically coupled, which is evidenced by two distinctly different metal‐centered oxidation processes that are separated by 134 mV (L4=[(bpy)2]; bpy=2,2′‐bipyridine) and 244 mV (L4=[(MeCN)4]), respectively. Hush analysis of the intervalence charge‐transfer bands in the mixed‐valent species indicates substantial valence delocalization in both complexes (delocalization parameter Γ=0.41 and 0.37 in the bpy and MeCN complexes, respectively). Spectroelectrochemical measurements further indicated that the mixed‐valent RuII/RuIII species and the fully oxidized RuIII/RuIII complexes gradually decompose when bound to MeCN ligands, whereas the bpy spectators significantly enhance the stability. These results demonstrate the efficiency of carbenes and, in particular, of the bbi ligand scaffold for mediating electron transfer and for the fabrication of molecular redox switches. Moreover, the relevance of spectator ligands is emphasized for tailoring the degree of electronic communication through the benzobis(carbene) linker.  相似文献   

5.
Amphiphilic polypyridyl mthenium(Ⅱ) complex cis-di(isothiocyanato)(4,4'-di-tert-butyl-2,2'-bipyridyl)(4,4'- dicarboxy-2,2'-bipyridyl)ruthenium(Ⅱ)(K005) has been synthesized and characterized by cyclic voltammetry, ^1H NMR, UV-Vis, and FT-IR spectroscopies. The sensitizer sensitizes TiO2 over a notably broad spectral range due to its intense metal-to-ligand charge-transfer (MLCT) bands at 537 and 418 nm. The photophysical and photochemical studies of K005 were contrasted with those of cis-Ru(dcbpy)2(NCS)2, known as the N3 dye, and the amphiphilic ruthenium(Ⅱ) dye Z907. A reversible couple at E1/2=0.725 V vs. saturated calomel electrode (SCE) with a separation of 0.08 V between the anodic and cathodic peaks, was observed due to the Ru^Ⅱ/Ⅲ couple by cyclic voltammetry. Furthermore, this amphiphilic ruthenium complex was successfully used as sensitizers for dye-sensitized solar cells with the efficiency of 3.72% at the 100 mW·cm^-2 irradiance of air mass 1.5 simulated sunlight without optimization of TiO2 films and the electrolyte.  相似文献   

6.
《Electroanalysis》2004,16(15):1211-1220
The electrochemical redox behavior of the polynuclear mixed valence ruthenium oxide cyanometallate complexes (mvRuOx? MCN, M=Fe, Cr, Ni, Cu, Ru and Pt) have been systematically studied in this report by using three redox sensitive organic probes of glucose, ethanol and formaldehyde. The results were interpreted by the well‐established ruthenium oxide and Prussian blue chemistry. The mvRuOx? MCN, under the category of Ru‐based Prussian blue analogue, was found to possess superior electrocatalytic activity than either ruthenium oxide or Prussian blue in acidic mediums. The electrogenerated oxy/hydroxy‐RuVII state (at +1.1 V vs. Ag/AgCl) was unusually stabilized in the mvRuOx? MCN matrix without any disproportion reaction in acidic environments. In contrast to those of earlier studies, possible structure in terms of the ? RuIII/II? NC? M? and ? RuIII/II? O? RuVII/VI? sites was proposed here. Enzyme‐less analytical detection of glucose in acidic conditions was first time demonstrated with sensitivity comparable to that of ruthenium oxide‐based electrodes in alkaline solutions.  相似文献   

7.
A glassy carbon electrode modified with a ruthenium (III) hexacyanoferrate film was investigated for the determination of captopril in pharmaceutical formulations. The RuOHCF film was deposited on the surface of the electrode after applying 50 successive cycles and subsequent stabilization in a mixture of NaNO3 0.50 mol L?1+HCl 0.050 mol L?1 used as supporting electrolyte. The main processes responsible for the redox electrode response are attributed to the system RuII/RuIII/RuIV, and appeared at ?0.080, 0.86 and 1.01 V (vs. SCE). The redox process at ?0.080 V was selected for the determination of captopril in the present study, once it provided higher sensibility and occurs in a lower potential than the other ones which can prevent interferences. The experimental parameters used in the determination of the analyte, using differential pulse voltammetry were optimized: pulse amplitude: 50 mV, scan rate: 5 mV s?1 and potential window: ?0.5 to 0.2 V (vs. SCE). The analytical application of the sensor in real samples demonstrated a linear range between 0.060 and 0.80 µmol L?1 (r=0.998) with a detection limit of 0.047 µmol L?1. A mechanism based on co‐precipitation of captopril and the Ru (III) complex in the film is presented once the signal of the RuII/III redox couple decreases with increasing the analyte concentration. Recoveries of 99 to 100 % were achieved in pharmaceutical samples and the proposed procedure agreed with the HPLC official method within 95 % confidence level, according to the t‐Student test.  相似文献   

8.
Accumulation of electroactive anions into a silicate film with covalently bonded room temperature ionic liquid film deposited on an indium tin oxide electrode was studied and compared with an electrode modified with an unconfined room temperature ionic liquid. A thin film containing imidazolium cationic groups was obtained by sol‐gel processing of the ionic liquid precursor 1‐methyl‐3‐(3‐trimethoxysilylpropyl)imidazolium bis(trifluoromethylsulfonyl)imide together with tetramethylorthosilicate on the electrode surface. Profilometry shows that the obtained film is not smooth and its approximate thickness is above 1 μm. It is to some extent permeable for a neutral redox probe – 1,1′‐ferrocene dimethanol. However, it acts as a sponge for electroactive ions like Fe(CN)63?, Fe(CN)64? and IrCl63?. This effect can be traced by cyclic voltammetry down to a concentration equal to 10?7 mol dm?3. Some accumulation of the redox active ions also occurs at the electrode modified with the ionic liquid precursor, but the voltammetric signal is significantly smaller compare with the bare electrode. The electrochemical oxidation of the redox liquid t‐butyloferrocene deposited on silicate confined ionic liquid film is followed by the expulsion of the electrogenerated cation into an aqueous solution. On the other hand, the voltammetry obtained with the electrode modified with t‐butyloferrocene solution in the ionic liquid precursor exhibits anion sensitive voltammetry. This is explained by anion insertion into the unconfined ionic liquid deposit following t‐butylferricinium cation formation.  相似文献   

9.
Porphyrin complexes of ruthenium are widely used as models for the heme protein system, for modelling naturally occurring iron–porphyrin systems and as catalysts in epoxidation reactions. The structural diversity of ruthenium complexes offers an opportunity to use them in the design of multifunctional supramolecular assemblies. Coproporphyrins and metallocoproporphyrins are used as sensors in bioassay and the potential use of derivatives as multiparametric sensors for oxygen and H+ is one of the main factors driving a growing interest in the synthesis of new porphyrin derivatives. In the coproporphyrin I RuII complex catena‐poly[[carbonylruthenium(II)]‐μ‐2,7,12,17‐tetrakis[2‐(ethoxycarbonyl)ethyl]‐3,8,13,18‐tetramethylporphyrinato‐κ5N ,N ′,N ′′,N ′′′:O ], [Ru(C44H52N4O8)(CO)]n , the RuII centre is coordinated by four N atoms in the basal plane, and by axial C (carbonyl ligand) and O (ethoxycarbonylethyl arm from a neighbouring complex) atoms. The complex adopts a distorted octahedral geometry. Self‐assembly of the molecules during crystallization from a methylene chloride–ethanol (1:10 v /v ) solution at room temperature gives one‐dimensional polymeric chains.  相似文献   

10.
A series of new hexacoordinated {RuII(NNNN,P)} complexes was prepared from [RuCl2(R3P)3]. Their structure was determined by X‐ray crystallography. The catalytic potential of this new class of complexes was tested in the alkylation of aniline with benzyl alcohol. In this test reaction, the influence of the counteranion plus electronic influences at the tetradentate ligand and the phosphine ligand were examined. The electrochemistry of all complexes was studied by cyclic voltammetry. Depending on the substituent at the ligand backbone, the complexes showed a different behavior. For all N‐benzyl substituted complexes, reversible RuII/III redox potentials were observed, whereas the N‐methyl substituted complex possessed an irreversible oxidation event at small scan rates. Furthermore, the electronic influence of different substituents at the ligand scaffold and at the phosphine on the RuII/III redox potential was investigated. The measured E0 values were correlated to the theoretically determined HOMO energies of the complexes. In addition, these HOMO energies correlated well with the reactivity of the single complexes in the alkylation of aniline with benzyl alcohol. The exact balance of redox potential and reactivity appears to be crucial for synchronizing the multiple hydrogen‐transfer events. The optimized catalyst structure was applied in a screening on scope and limitation in the catalytic dehydrative alkylation of anilines by using alcohols.  相似文献   

11.
Coordination of a redox‐active pyridine aminophenol ligand to RuII followed by aerobic oxidation generates two diamagnetic RuIII species [ 1 a (cis) and 1 b (trans)] with ligand‐centered radicals. The reaction of 1 a / 1 b with excess NaN3 under inert atmosphere resulted in the formation of a rare bis(nitrido)‐bridged trinuclear ruthenium complex with two nonlinear asymmetrical Ru‐N‐Ru fragments. The spontaneous reduction of the ligand centered radical in the parent 1 a / 1 b supports the oxidation of a nitride (N3?) to half an equivalent of N2. The trinuclear omplex is reactive toward TEMPO‐H, tin hydrides, thiols, and dihydrogen.  相似文献   

12.
The synthesis of four N-benzoylthioureas containing pyrrole groups are described. The electrochemical behaviour of their copper(II) and nickel(II) complexes has been investigated in aprotic solvents by coulometry and by cyclic voltammetry which indicates that the electrochemical oxidation of copper complexes leads to the formation of CuII-benzylureate complexes. The oxidative polymerization of nickel complexes on platinum and a glassy carbon electrode, has been carried out in MeCN.The redox properties of the polymeric films formed have been examined by cyclic voltammetry. The films are catalytically active in the electroreduction of oxygen.  相似文献   

13.
An N-pyridyl-o-aminophenol derivative that stabilises mixed-valence states of ruthenium ions is disclosed. A diruthenium complex, [(LIQ0)Ru2Cl5] ⋅ MeOH ( 1⋅ MeOH) is successfully isolated, in which LIQ0 is the o-iminobenzoquinone form of 2-[(3-nitropyridin-2-yl)amino]phenol (LAPH2). In 1 , LIQ0 oriented towards one ruthenium centre is a non-innocent NO-donor redox ligand, whereas another oriented towards another ruthenium centre is an innocent pyridine-donor redox ligand. Complex 1 is a diruthenium(II,III) mixed-valence complex, [RuII(LIQ0)(μ-Cl)2RuIII], with a minor contribution from the diruthenium(III,III) state. [RuIII(LISQ.−)(μ-Cl)2RuIII] contains LISQ.−, which is the o-iminobenzosemiquinonate anion radical form of the ligand. Complexes 1 and 1 + are diruthenium(II,II), [RuII(LIQ0)(μ-Cl)2RuII], and diruthenium(III,III), [RuIII(LIQ0)(μ-Cl)2RuIII], complexes, respectively, of LIQ0. Complex 1 2− is a diruthenium(II,II) complex of the o-iminobenzosemiquinonate anion radical (LISQ.−), [RuII(LISQ.−)(μ-Cl)2RuII], with a minor contribution from the diruthenium(III,II) form, [RuIII(LAP2−)(μ-Cl)2RuII]. Complex 1 2+ is a diruthenium(III,IV) mixed-valence complex of LIQ0, [RuIII(LIQ0)(μ-Cl)2RuIV]. Complexes 1 and 1 2+ exhibit inter-valence charge-transfer transitions at λ=1300 and 1370 nm, respectively.  相似文献   

14.
Cyclic voltammetry was employed to investigate the electrochemical behavior of numerous cyclopentadienyliron (CpFe+) and pentamethyl-cyclopentadienylruthenium (Cp*Ru+) coordinated oligomers and polymers. The electrochemical behavior of the iron systems indicated the cyclopentadienyliron complexes had isolated redox centers and that changes in the reversibility of the redox couple occurred with changes in solvent and temperature. In contrast, the monometallic ruthenium systems showed large peak separations that suggested slow kinetics on the CV timescale. The cyclic voltammograms of the larger ruthenium-containing oligomers and polymers showed multiple redox steps indicating complex electrochemical behavior.  相似文献   

15.
A new family of ruthenium complexes based on the N‐pentadentate ligand Py2Metacn (N‐methyl‐N′,N′′‐bis(2‐picolyl)‐1,4,7‐triazacyclononane) has been synthesised and its catalytic activity has been studied in the water‐oxidation (WO) reaction. We have used chemical oxidants (ceric ammonium nitrate and NaIO4) to generate the WO intermediates [RuII(OH2)(Py2Metacn)]2+, [RuIII(OH2)(Py2Metacn)]3+, [RuIII(OH)(Py2Metacn)]2+ and [RuIV(O)(Py2Metacn)]2+, which have been characterised spectroscopically. Their relative redox and pH stability in water has been studied by using UV/Vis and NMR spectroscopies, HRMS and spectroelectrochemistry. [RuIV(O)(Py2Metacn)]2+ has a long half‐life (>48 h) in water. The catalytic cycle of WO has been elucidated by using kinetic, spectroscopic, 18O‐labelling and theoretical studies, and the conclusion is that the rate‐determining step is a single‐site water nucleophilic attack on a metal‐oxo species. Moreover, [RuIV(O)(Py2Metacn)]2+ is proposed to be the resting state under catalytic conditions. By monitoring CeIV consumption, we found that the O2 evolution rate is redox‐controlled and independent of the initial concentration of CeIV. Based on these facts, we propose herein that [RuIV(O)(Py2Metacn)]2+ is oxidised to [RuV(O)(Py2Metacn)]2+ prior to attack by a water molecule to give [RuIII(OOH)(Py2Metacn)]2+. Finally, it is shown that the difference in WO reactivity between the homologous iron and ruthenium [M(OH2)(Py2Metacn)]2+ (M=Ru, Fe) complexes is due to the difference in the redox stability of the key MV(O) intermediate. These results contribute to a better understanding of the WO mechanism and the differences between iron and ruthenium complexes in WO reactions.  相似文献   

16.
The N‐alkylation of amines in the presence of different ruthenium catalysts generated in situ was investigated. Among the various catalysts tested, the combination of [Ru3(CO)12] and N‐phenyl‐2‐(dicyclohexylphosphanyl)pyrrole showed the best performance. By applying this novel catalyst, a variety of functionalized alcohols and amines were converted into the corresponding secondary amines in high yield.  相似文献   

17.
The interaction of azide (N 3 ) ion, at pH 5.3 with [RuIII(EDTA) (H2O)] (EDTA = ethylenediaminetetraacetate) was studied in aqueous solution by polarography and cyclic voltammetry. The product, [RuIII(EDTA)(N3)]2− showed a multi-electron reduction step, which is polarographically reversible but, cyclic voltammetrically irreversible, in the potential range − 0.1 to − 0.2 V vs SCE. This reduction step, which was different from the one-electron reduction step of [RuIII(EDTA)(H2O)]; (E1/2 = −0.113V vs SCE) was assigned to the reduction of the coordinated azide ion to ammonia by the irreversible transfer of electrons from Hg-electrode via ruthenium metal. Azide, at pH 5.3, was reduced, electrolytically, for the first time, to ammonia at Hg-pool cathode mediated by [RuIII(EDTA) (N3)]2−. The turnover number with respect to the formation of ammonia (moles of ammonia per mole of ruthenium per hour) was obtained from the constant potential electrolysis data. On the basis of experimental observations, a probable mechanism has been proposed for the electrocatalytic reduction of azide to ammonia in aqueous solution.  相似文献   

18.
Carbon monoxide (CO) has recently been shown to impart beneficial effects in mammalian physiology and considerable research attention is now being directed toward metal–carbonyl complexes as a means of delivering CO to biological targets. Two ruthenium carbonyl complexes, namely trans‐dicarbonyldichlorido(4,5‐diazafluoren‐9‐one‐κ2N,N′)ruthenium(II), [RuCl2(C11H6N2O)(CO)2], (1), and fac‐tricarbonyldichlorido(4,5‐diazafluoren‐9‐one‐κN)ruthenium(II), [RuCl2(C11H6N2O)(CO)3], (2), have been isolated and structurally characterized. In the case of complex (1), the trans‐directing effect of the CO ligands allows bidentate coordination of the 4,5‐diazafluoren‐9‐one (dafo) ligand despite a larger bite distance between the N‐donor atoms. In complex (2), the cis disposition of two chloride ligands restricts the ability of the dafo molecule to bind ruthenium in a bidentate fashion. Both complexes exhibit well defined 1H NMR spectra confirming the diamagnetic ground state of RuII and display a strong absorption band around 300 nm in the UV.  相似文献   

19.
The redox and interactive behaviour of flavin adenine dinucleotide (FAD) with a ruthenium (Ru)-modified glassy carbon electrode (GCE) was investigated. The electron-transfer kinetics on the Ru-modified GCE gives an apparent electron-transfer coefficient, α app of 0.56, and an apparent heterogeneous electron transfer rate constant, k app of 2.32?s?1, respectively. The cyclic voltammetry (CV) complemented by alternating cyclic voltammetry (ACV) shows reduction of FAD to be a quasi-reversible reaction involving FAD adsorption. The adsorption of FAD on the Ru-modified GCE fits a Langmuir adsorption isotherm. The large apparent negative Gibbs energy of adsorption ΔG ads (?38.2?kJ?mol?1) of FAD onto the Ru-modified GCE confirmed a strong chemical adsorption of FAD on the surface. The deposited Ru islands block surface sites for FAD adsorption and the electron-transfer communication between FAD and the electrode surface does not significantly improve with a deposited Ru monolayer.  相似文献   

20.
The water-soluble complex [RuClCp(PPh3)(mPTA)](CF3SO3) reacts with the thiopurines, bis(S-8-thiotheophylline)methane (MBTTH2), 1,2-bis(S-8-thiotheophylline)ethane (EBTTH2), and 1,3-bis(S-8-thiotheophylline)propane (PBTTH2), to lead to the binuclear ruthenium(II) complexes [{RuCp(PPh3)(mPTA)}2-μ-(LS7,S′7)](CF3SO3)2 where (L = MBTT2? (1), EBTT2? (2), and PBTT2? (3)). All the complexes have been fully characterized by elemental analysis, IR, and multinuclear 1H, 13C{1H}, and 31P{1H} NMR spectroscopy. The cyclic voltammetry of the complexes is characterized by two one-electron oxidative responses (RuII–RuII/RuIII–RuII; RuIII–RuII/RuIII–RuIII) that increase their redox potential when the bis(8-thiotheophylline)-alkyl-bridge growths. The reactivity against DNA and partition coefficient of the complexes were also determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号