首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is well known that exact projection methods (EPM) on non‐staggered grids suffer for the presence of non‐solenoidal spurious modes. Hence, a formulation for simulating time‐dependent incompressible flows while allowing the discrete continuity equation to be satisfied up to machine‐accuracy, by using a Finite Volume‐based second‐order accurate projection method on non‐staggered and non‐uniform 3D grids, is illustrated. The procedure exploits the Helmholtz–Hodge decomposition theorem for deriving an additional velocity field that enforces the discrete continuity without altering the vorticity field. This is accomplished by first solving an elliptic equation on a compact stencil that is by performing a standard approximate projection method (APM). In such a way, three sets of divergence‐free normal‐to‐face velocities can be computed. Then, a second elliptic equation for a scalar field is derived by prescribing that its additional discrete gradient ensures the continuity constraint based on the adopted linear interpolation of the velocity. Characteristics of the double projection method (DPM) are illustrated in details and stability and accuracy of the method are addressed. The resulting numerical scheme is then applied to laminar buoyancy‐driven flows and is proved to be stable and efficient. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
An algorithm, based on the overlapping control volume (OCV) method, for the solution of the steady and unsteady two‐dimensional incompressible Navier–Stokes equations in complex geometry is presented. The primitive variable formulation is solved on a non‐staggered grid arrangement. The problem of pressure–velocity decoupling is circumvented by using momentum interpolation. The accuracy and effectiveness of the method is established by solving five steady state and one unsteady test problems. The numerical solutions obtained using the technique are in good agreement with the analytical and benchmark solutions available in the literature. On uniform grids, the method gives second‐order accuracy for both diffusion‐ and convection‐dominated flows. There is little loss of accuracy on grids that are moderately non‐orthogonal. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
A recently developed non‐staggered methodology which uses the principle of applying fourth‐order dissipation to the governing pressure‐correction equation is developed so it can be applied to unstructured grids. A finite volume methodology is used for discretization. The fourth‐order dissipation term is found using second‐order gradient operators. This makes it straightforward to incorporate the dissipation term on unstructured grids. The new methodology is compared with solutions from a standard finite volume second‐order flow solver and is also tested for a standard laminar driven‐lid flow problem with grids systems that do not have a uniform structure. Finally, we demonstrate how the new methodology can be used to predict flow over a wavy boundary. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
This paper is concerned with the development of a new high‐order finite volume method for the numerical simulation of highly convective unsteady incompressible flows on non‐uniform grids. Specifically, both a high‐order fluxes integration and the implicit deconvolution of the volume‐averaged field are considered. This way, the numerical solution effectively stands for a fourth‐order approximation of the point‐wise one. Moreover, the procedure is developed in the framework of a projection method for the pressure–velocity decoupling, while originally deriving proper high‐order intermediate boundary conditions. The entire numerical procedure is discussed in detail, giving particular attention to the consistent discretization of the deconvolution operation. The present method is also cast in the framework of approximate deconvolution modelling for large‐eddy simulation. The overall high accuracy of the method, both in time and space, is demonstrated. Finally, as a model of real flow computation, a two‐dimensional time‐evolving mixing layer is simulated, with and without sub‐grid scales modelling. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
A new finite difference methodology is developed for the solution of computational fluid dynamics problems that do not require the use of staggered grid systems. Previous successful and robust non‐staggered methods, which used primitive variables and mass conservation in order to solve the pressure field, either interpolate cell‐face velocities or interpolate the pressure gradients in a special way, usually with an upwind‐bias to avoid the problem of odd–even coupling between the velocity and pressure fields. The new methodology presented does not detail a ‘special interpolation procedure for a primitive variable’, however, it manages to avoid the problem of odd–even coupling. The odd–even coupling is avoided by applying fourth‐order dissipation to the pressure field. It is shown that this approach can be regarded as a modified Rhie and Chow scheme. The method is implemented using a SIMPLE‐type algorithm and is applied to two test problems: laminar flow over a backward‐facing step and laminar flow in a square cavity with a driven lid. Good agreement is obtained between the numerical solutions and the corresponding benchmark solutions. The pressure dissipation term was found to successfully suppress wiggles in the pressure field. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
A new method for computing the fluid flow in complex geometries using highly non‐smooth and non‐orthogonal staggered grid is presented. In a context of the SIMPLE algorithm, pressure and physical tangential velocity components are used as dependent variables in momentum equations. To reduce the sensitivity of the curvature terms in response to coordinate line orientation change, these terms are exclusively computed using Cartesian velocity components in momentum equations. The method is then used to solve some fairly complicated 2‐D and 3‐D flow field using highly non‐smooth grids. The accuracy of results on rough grids (with sharp grid line orientation change and non‐uniformity) was found to be high and the agreement with previous experimental and numerical results was quite good. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
We present a projection scheme whose end‐of‐step velocity is locally pointwise divergence free, using a continuous ?1 approximation for the velocity in the momentum equation, a first‐order Crouzeix–Raviart approximation at the projection step, and a ?0 approximation for the pressure in both steps. The analysis of the scheme is done only for grids that guarantee the existence of a divergence free conforming ?1 interpolant for the velocity. Optimal estimates for the velocity error in L2‐ and H1‐norms are deduced. The numerical results demonstrate that these estimates should also hold on grids on which the continuous ?1 approximation for the velocity locks. Since the end‐of‐step velocity is locally solenoidal, the scheme is recommendable for problems requiring good mass conservation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
A novel Mach‐uniform method to compute flows using unstructured staggered grids is discussed. The Mach‐uniform method is a generalization of the pressure‐correction approach for incompressible flows, and is valid for Mach numbers ranging from 0 (incompressible) to > 1 (supersonic). The primary variables (ρ u ,p and ρ) are updated sequentially. The grid consists of triangles. A staggered positioning of the variables is employed: the scalar variables are located at the centroids of the triangles, whereas the normal momentum components are positioned at the midpoints of the faces of the triangles. Discretization of the two‐dimensional flow equations on unstructured staggered grids is discussed. For the cell face fluxes there is a choice between first‐order upwind and central approximation. Flows around the NACA 0012 airfoil with freestream Mach numbers ranging from 0 to 1.2 are computed to demonstrate the Mach‐uniform accuracy and efficiency of the proposed method. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
We set up a numerical strategy for the simulation of the Euler equations, in the framework of finite volume staggered discretizations where numerical densities, energies, and velocities are stored on different locations. The main difficulty relies on the treatment of the total energy, which mixes quantities stored on different grids. The proposed method is strongly inspired, on the one hand, from the kinetic framework for the definition of the numerical fluxes, and, on the other hand, from the discrete duality finite volume (DDFV) framework, which has been designed for the simulation of elliptic equations on complex meshes. The time discretization is explicit and we exhibit stability conditions that guaranty the positivity of the discrete densities and internal energies. Moreover, while the scheme works on the internal energy equation, we can define a discrete total energy which satisfies a local conservation equation. We provide a set of numerical simulations to illustrate the behavior of the scheme.  相似文献   

10.
This paper is concerned with the analysis of the Helmholtz–Hodge decomposition theorem since it plays a fundamental role in the projection methods that are adopted in the numerical solution of the Navier–Stokes equations for incompressible flows. The paper highlights the role of the orthogonal decomposition of a vector field in a bounded domain when general boundary conditions are in effect. In fact, even if Fractional Time‐Step Methods are standard procedures for de‐coupling the pressure gradient and the velocity field, many problems are encountered in performing the decoupling with higher accuracy. Since the problem of determining a unique and orthogonal decomposition requires only one boundary condition to be well posed, thus either the normal or the tangential ones, result exactly imposed at the end of the projection. Numerical errors are introduced in terms of both the pressure and the velocity but the orthogonality of decomposition guarantees that the former does not contribute to affect the accuracy of the latter. Moreover, it is shown that depending on the meaning of the vector to be decomposed, i.e. acceleration or velocity, the true orthogonal projector can be defined only when suitable boundary conditions are verified. Conversely, it is shown that when the decomposition results non‐orthogonal, the velocity accuracy suffers of other errors. The issue on the resulting accuracy order of the procedure is clearly addressed by means of several accuracy studies and a strategy for improving it is proposed. This paper follows and integrates the issues reported in Iannelli and Denaro (Int. J. Numer. Meth. Fluids 2003; 42 : 399–437). Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
An alternative discretization of pressure‐correction equations within pressure‐correction schemes for the solution of the incompressible Navier–Stokes equations is introduced, which improves the convergence and robustness properties of such schemes for non‐orthogonal grids. As against standard approaches, where the non‐orthogonal terms usually are just neglected, the approach allows for a simplification of the pressure‐correction equation to correspond to 5‐point or 7‐point computational molecules in two or three dimensions, respectively, but still incorporates the effects of non‐orthogonality. As a result a wide range (including rather high values) of underrelaxation factors can be used, resulting in an increased overall performance of the underlying pressure‐correction schemes. Within this context, a second issue of the paper is the investigation of the accuracy to which the pressure‐correction equation should be solved in each pressure‐correction iteration. The scheme is investigated for standard test cases and, in order to show its applicability to practical flow problems, for a more complex configuration of a micro heat exchanger. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
We present in this paper a finite difference solver for Maxwell's equations in non‐staggered grids. The scheme formulated in time domain theoretically preserves the properties of zero‐divergence, symplecticity, and dispersion relation. The mathematically inherent Hamiltonian can be also retained all the time. Moreover, both spatial and temporal terms are approximated to yield the equal fourth‐order spatial and temporal accuracies. Through the computational exercises, modified equation analysis and Fourier analysis, it can be clearly demonstrated that the proposed triple‐preserving solver is computationally accurate and efficient for use to predict the Maxwell's solutions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
This work investigates the mitigation and elimination of scheme‐related oscillations generated in compact and classical fourth‐order finite difference solutions of stiff problems, represented here by the Burgers and Reynolds equations. The regions where severe gradients are anticipated are refined by the use of subdomains where the grid is distributed according to a geometric progression. It is observed that, for multi‐domain solutions, both the classical and compact fourth‐order finite difference schemes can exhibit spurious oscillations. When present, the oscillations are initially generated around the interface between the uniform and non‐uniform grid subdomains. Based on a thorough study of the grid distribution effects, it is shown that the numerical oscillations are caused by inadequate geometric progression ratios within the non‐uniformly discretized subdomains. Indeed, accurate solutions are obtainable if and only if the grid ratios in the non‐uniform subdomains are greater than a critical threshold ratio. It is concluded that high‐order classical and compact schemes can be used with confidence to efficiently solve one‐ or two‐dimensional problems whose solutions exhibit sharp gradients in very thin regions, provided that the numerically generated oscillations are eliminated by an appropriate choice of grid distribution within the non‐uniformly discretized subdomains. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents a family of High‐order finite volume schemes applicable on unstructured grids. The k‐exact reconstruction is performed on every control volume as the primary reconstruction. On a cell of interest, besides the primary reconstruction, additional candidate reconstruction polynomials are provided by means of very simple and efficient ‘secondary’ reconstructions. The weighted average procedure of the WENO scheme is then applied to the primary and secondary reconstructions to ensure the shock‐capturing capability of the scheme. This procedure combines the simplicity of the k‐exact reconstruction with the robustness of the WENO schemes and represents a systematic and unified way to construct High‐order accurate shock capturing schemes. To further improve the efficiency, an efficient problem‐independent shock detector is introduced. Several test cases are presented to demonstrate the accuracy and non‐oscillation property of the proposed schemes. The results show that the proposed schemes can predict the smooth solutions with uniformly High‐order accuracy and can capture the shock waves and contact discontinuities in high resolution. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
A higher order compact (HOC) finite difference solution procedure has been proposed for the steady two‐dimensional (2D) convection–diffusion equation on non‐uniform orthogonal Cartesian grids involving no transformation from the physical space to the computational space. Effectiveness of the method is seen from the fact that for the first time, an HOC algorithm on non‐uniform grid has been extended to the Navier–Stokes (N–S) equations. Apart from avoiding usual computational complexities associated with conventional transformation techniques, the method produces very accurate solutions for difficult test cases. Besides including the good features of ordinary HOC schemes, the method has the advantage of better scale resolution with smaller number of grid points, with resultant saving of memory and CPU time. Gain in time however may not be proportional to the decrease in the number of grid points as grid non‐uniformity imparts asymmetry to some of the associated matrices which otherwise would have been symmetric. The solution procedure is also highly robust as it computes complex flows such as that in the lid‐driven square cavity at high Reynolds numbers (Re), for which no HOC results have so far been seen. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents a convection–diffusion‐reaction (CDR) model for solving magnetic induction equations and incompressible Navier–Stokes equations. For purposes of increasing the prediction accuracy, the general solution to the one‐dimensional constant‐coefficient CDR equation is employed. For purposes of extending this discrete formulation to two‐dimensional analysis, the alternating direction implicit solution algorithm is applied. Numerical tests that are amenable to analytic solutions were performed in order to validate the proposed scheme. Results show good agreement with the analytic solutions and high rate of convergence. Like many magnetohydrodynamic studies, the Hartmann–Poiseuille problem is considered as a benchmark test to validate the code. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
This paper describes a finite‐volume volume‐of‐fluid (VOF) method for simulating viscous free surface flows on dynamically adaptive quadtree grids. The scheme is computationally efficient in that it provides relatively fine grid resolution at the gas–liquid interface and coarse grid density in regions where flow variable gradients are small. Special interpolations are used to ensure volume flux conservation where differently sized neighbour cells occur. The numerical model is validated for advection of dyed fluid in unidirectional and rotating flows, and for two‐dimensional viscous sloshing in a rectangular tank. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
Compact finite difference methods feature high‐order accuracy with smaller stencils and easier application of boundary conditions, and have been employed as an alternative to spectral methods in direct numerical simulation and large eddy simulation of turbulence. The underpinning idea of the method is to cancel lower‐order errors by treating spatial Taylor expansions implicitly. Recently, some attention has been paid to conservative compact finite volume methods on staggered grid, but there is a concern about the order of accuracy after replacing cell surface integrals by average values calculated at centres of cell surfaces. Here we introduce a high‐order compact finite difference method on staggered grid, without taking integration by parts. The method is implemented and assessed for an incompressible shear‐driven cavity flow at Re = 103, a temporally periodic flow at Re = 104, and a spatially periodic flow at Re = 104. The results demonstrate the success of the method. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
The accuracy of colocated finite volume schemes for the incompressible Navier–Stokes equations on non‐smooth curvilinear grids is investigated. A frequently used scheme is found to be quite inaccurate on non‐smooth grids. In an attempt to improve the accuracy on such grids, three other schemes are described and tested. Two of these are found to give satisfactory results. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
Fractional‐step methods solve the unsteady Navier–Stokes equations in a segregated manner, and can be implemented with only a single solution of the momentum/pressure equations being obtained at each time step, or with the momentum/pressure system being iterated until a convergence criterion is attained.The time accuracy of such methods can be determined by the accuracy of the momentum/pressure coupling, irrespective of the accuracy to which the momentum equations are solved. It is shown that the time accuracy of the basic projection method is first‐order as a result of the momentum/pressure coupling, but that by modifying the coupling directly, or by modifying the intermediate velocity boundary conditions, it is possible to recover second‐order behaviour. It is also shown that pressure correction methods, implemented in non‐iterative or iterative form and without special boundary conditions, are second‐order in time, and that a form of the non‐iterative pressure correction method is the most efficient for the problems considered. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号