首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Addition of various amines to the 3,3‐bis(trifluoromethyl)acrylamides 10a and 10b gave the tripeptides 11a – 11f , mostly as mixtures of epimers (Scheme 3). The crystalline tripeptide 11f 2 was found to be the N‐terminal (2‐hydroxyethoxy)‐substituted (R,S,S)‐ester HOCH2CH2O‐D ‐Val(F6)‐MeLeu‐Ala‐OtBu by X‐ray crystallography. The C‐terminal‐protected tripeptide 11f 2 was condensed with the N‐terminus octapeptide 2b to the depsipeptide 12a which was thermally rearranged to the undecapeptide 13a (Scheme 4). The condensation of the epimeric tripeptide 11f 1 with the octapeptide 2b gave the undecapeptide 13b directly. The undecapeptides 13a and 13b were fully deprotected and cyclized to the [5‐[4,4,4,4′,4′,4′‐hexafluoro‐N‐(2‐hydroxyethoxy)‐D ‐valine]]‐ and [5‐[4,4,4,4′,4′,4′‐hexafluoro‐N‐(2‐hydroxyethoxy)‐L ‐valine]]cyclosporins 14a and 14b , respectively (Scheme 5). Rate differences observed for the thermal rearrangements of 12a to 13a and of 12b to 13b are discussed.  相似文献   

2.
2,2‐Difluor‐1,3‐diaza‐2‐sila‐cyclopentene – Synthesis and Reactions N,N′‐Di‐tert‐butyl‐1,4‐diaza‐1,3‐butadiene reacts with elemental lithium under reduction to give a dilithium salt, which forms with fluorosilanes the diazasilacyclopentenes 1 – 4 ; (HCNCMe3)2SiFR, R = F ( 1 ), Me ( 2 ), Me3C ( 3 ), N(CMe3)SiMe3 ( 4 ). As by‐product in the synthesis of 1 , the tert‐butyl‐amino‐methylene‐tert‐butyliminomethine substituted compound 5 was isolated, R = N(CMe3)‐CH2‐CH = NCMe3. 5 is formed in the reaction of 1 with the monolithium salt of the 1,4‐diaza‐1,3‐butadiene in an enamine‐imine‐tautomerism. 1 reacts with lithium amides to give (HCNCMe3)2SiFNHR, 6 – 12 , R = H ( 6 ), Me ( 7 ), Me2CH ( 8 ), Me3C ( 9 ), H5C6 ( 10 ), 2,6‐Me2C6H3 ( 11 ), 2,6‐(Me2CH)2C6H3 ( 12 ). The reaction of 12 with LiNH‐2.6‐(Me2CH)2C6H3 leads to the formation of (HCNCMe3)2Si(NHR)2, ( 13 ). In the presence of n‐BuLi, 12 forms a lithium salt which looses LiF in boiling toluene. Lithiated 12 adds this LiF and generates a spirocyclic tetramer with a central eight‐membered LiF‐ring ( 14 ), [(HCNCMe3)2Si(FLiFLiNR)]4, R = 2,6‐(Me2CH)2C6H3. ClSiMe3 reacts with lithiated 12 to yield the substitution product (HCNCMe3)2SiFN(SiMe3) R, ( 15 ). The crystal structures of 1 , 5 , 6 , 9 , 11 , 13 , 14 are reported.  相似文献   

3.
1,2‐Diaza‐3‐silacyclopent‐5‐ene – Synthesis and Reactions The dilithium salt of bis(tert‐butyl‐trimethylsilylmethylen)ketazine ( 1 ) forms an imine‐enamine salt. 1 reacts with halosilanes in a molar ratio of 1:1 to give 1,2‐diaza‐3‐silacyclopent‐5‐enes. Me3SiCH=CCMe3 [N(SiR,R′)‐N=C‐C]HSiMe3 ( 2 ‐ 7 ). ( 2 : R,R′ = Cl; 3 : R = CH3, R′ = Ph; 4 : R = F, R′ = CMe3; 5 : R = F, R′ = Ph; 6 : R = F, R′ = N(SiMe3)2; 7 : R = F, R′ = N(CMe3)SiMe3). In the reaction of 1 with tetrafluorosilane the spirocyclus 8 is isolated. The five‐membered ring compounds 2 ‐ 7 and compound 9 substituted on the silicon‐fluoro‐ and (tert‐butyltrimethylsilyl) are acid at the C(4)‐atom and therefore can be lithiated. Experiments to prepare lithium salts of 4 with MeLi, n‐BuLi and PhLi gave LiF and the substitution‐products 10 ‐ 12 . 9 forms a lithium salt which reacts with ClSiMe3 to give LiCl and the SiMe3 ring system ( 13 ) substituted at the C(4)‐atom. The ring compounds 3 ‐ 7 and 10 ‐ 12 form isomers, the formation is discussed. Results of the crystal structure and analyses of 8 , 10 , 12 , and 13 are presented.  相似文献   

4.
Carba‐closo‐dodecaborate anions with two functional groups have been synthesized via a simple two‐step procedure starting from monoamino‐functionalized {closo‐1‐CB11} clusters. Iodination at the antipodal boron atom provided access to [1‐H2N‐12‐I‐closo‐1‐CB11H10]? ( 1 a ) and [2‐H2N‐12‐I‐closo‐1‐CB11H10]? ( 2 a ), which have been transformed into the anions [1‐H2N‐12‐RC?C‐closo‐1‐CB11H10]? (R=H ( 1 b ), Ph ( 1 c ), Et3Si ( 1 d )) and [2‐H2N‐12‐RC?C‐closo‐1‐CB11H10]? (R=H ( 2 b ), Ph ( 2 c ), Et3Si ( 2 d )) by microwave‐assisted Kumada‐type cross‐coupling reactions. The syntheses of the inner salts 1‐Me3N‐12‐RC?C‐closo‐1‐CB11H10 (R=H ( 1 e ), Et3Si ( 1 f )) and 2‐Me3N‐12‐RC?C‐closo‐1‐CB11H10 (R=H ( 2 e ), Et3Si ( 2 f )) are the first examples for a further derivatization of the new anions. All {closo‐1‐CB11} clusters have been characterized by multinuclear NMR and vibrational spectroscopy as well as by mass spectrometry. The crystal structures of Cs 1 a , [Et4N] 2 a , K 1 b , [Et4N] 1 c , [Et4N] 2 c , 1 e , and [Et4N][1‐H2N‐2‐F‐12‐I‐closo‐1‐CB11H9]?0.5 H2O ([Et4N ]4 a ?0.5 H2O) have been determined. Experimental spectroscopic data and especially spectroscopic data and bond properties derived from DFT calculations provide some information on the importance of inductive and resonance‐type effects for the transfer of electronic effects through the {closo‐1‐CB11} cage.  相似文献   

5.
6.
Silylhydrazines and Dimeric N,N′‐Dilithium‐N,N′‐bis(silyl)hydrazides – Syntheses, Reactions, Isomerisations Di‐tert.‐butylchlorosilane reacts with dilithiated hydrazine in a molar ratio to give the N,N′‐bis(silyl)hydrazine, [(Me3C)2SiHNH]2, ( 5 ). Isomeric tris(silyl)hydrazines, N‐difluorophenylsilyl‐N′,N′‐bis(dimethylphenylsilyl)hydrazine ( 7 ) and N‐difluorophenylsilyl‐N,N′‐bis(dimethylphenylsilyl)hydrazine ( 8 ) are formed in the reaction of N‐lithium‐N′‐N′‐bis(dimethylphenylsilyl)hydrazide and F3SiPh. Isomeric bis(silyl)hydrazines, (Me3C)2SiFNHNHSiMe2Ph ( 9 ) and (Me3C)2‐ SiF(PhMe2Si)N–NH2 ( 10 ) are the result of the reaction of di‐tert.‐butylfluorosilylhydrazine and ClSiMe2Ph in the presence of Et3N. Quantum chemical calculations for model compounds demonstrate the dyotropic course of the rearrangement. The monolithium derivative of 5 forms a N‐lithium‐N′,N′‐bis(silyl)hydrazide ( 11 ). The dilithium salts of 5 ( 13 ) and of the bis(tert.‐butyldiphenylsilyl)hydrazine ( 12 ) crystallize as dimers with formation of a central Li4N4 unit. The formation of 12 from 11 occurs via a N′ → N‐silyl group migration. Results of crystal structure analyses are reported.  相似文献   

7.
Two isomeric pyridine‐substituted norbornenedicarboximide derivatives, namely N‐(pyridin‐2‐yl)‐exo‐norbornene‐5,6‐dicarboximide, (I), and N‐(pyridin‐3‐yl)‐exo‐norbornene‐5,6‐dicarboximide, (II), both C14H12N2O4, have been crystallized and their structures unequivocally determined by single‐crystal X‐ray diffraction. The molecules consist of norbornene moieties fused to a dicarboximide ring substituted at the N atom by either pyridin‐2‐yl or pyridin‐3‐yl in an anti configuration with respect to the double bond, thus affording exo isomers. In both compounds, the asymmetric unit consists of two independent molecules (Z′ = 2). In compound (I), the pyridine rings of the two independent molecules adopt different conformations, i.e. syn and anti, with respect to the methylene bridge. The intermolecular contacts of (I) are dominated by C—H...O interactions. In contrast, in compound (II), the pyridine rings of both molecules have an anti conformation and the two independent molecules are linked by carbonyl–carbonyl interactions, as well as by C—H...O and C—H...N contacts.  相似文献   

8.
The known glucaro‐1,5‐lactam 8 , its diastereoisomers 9 – 11 , and the tetrahydrotetrazolopyridine‐5‐carboxylates 12 – 14 were synthesised as potential inhibitors of β‐D ‐glucuronidases and α‐L ‐iduronidases. The known 2,3‐di‐O‐benzyl‐4,6‐O‐benzylidene‐D ‐galactose ( 16 ) was transformed into the D ‐galactaro‐ and L ‐altraro‐1,5‐lactams 9 and 11 via the galactono‐1,5‐lactam 21 in twelve steps and in an overall yield of 13 and 2%, respectively. A divergent strategy, starting from the known tartaric anhydride 41 , led to the D ‐glucaro‐1,5‐lactam 8 , D ‐galactaro‐1,5‐lactam 9 , L ‐idaro‐1,5‐lactam 10 , and L ‐altraro‐1,5‐lactam 11 in ten steps and in an overall yield of 4–20%. The anhydride 41 was transformed into the L ‐threuronate 46 . Olefination of 46 to the (E)‐ or (Z)‐alkene 47 or 48 followed by reagent‐ or substrate‐controlled dihydroxylation, lactonisation, azidation, reduction, and deprotection led to the lactams 8 – 11 . The tetrazoles 12 – 14 were prepared in an overall yield of 61–81% from the lactams 54, 28 , and 67 , respectively, by treatment with Tf2O and NaN3, followed by saponification, esterification, and hydrogenolysis. The lactams 8 – 11 and 40 and the tetrazoles 12 – 14 are medium‐to‐strong inhibitors of β‐D ‐glucuronidase from bovine liver. Only the L ‐ido‐configured lactam 10 (Ki = 94 μM ) and the tetrazole 14 (Ki = 1.3 mM ) inhibit human α‐L ‐iduronidase.  相似文献   

9.
The title mol­ecule (DMPH‐H), C8H9N5O6, was investigated to provide comparison with 2,2‐di­phenyl‐1‐picryl­hydrazine, which unlike DMPH‐H is readily oxidizable to form a well known stable free radical (DPPH). The structure shows essential differences in the configuration of the hydrazine‐N atoms, the ortho‐nitro group orientations and the crystal packing. The bond angles of the di­methyl­amino N atom [107.90 (13), 108.96 (12) and 112.21 (13)°] are consistent with a tetrahedral N atom and sp3 hybridization.  相似文献   

10.
The synthesis of a new series of 4‐aryl‐3‐chloro‐2‐oxo‐N‐[3‐(10H‐phenothiazin‐10‐yl)propyl]azetidine‐1‐carboxamides, 4a – 4m , is described. Phenothiazine on reaction with Cl(CH2)3Br at room temperature gave 10‐(3‐chloropropyl)‐10H‐phenothiazine ( 1 ), and the latter reacted with urea to yield 1‐[3‐(10H‐phenothiazin‐10‐yl)propyl]urea ( 2 ). Further reaction of 2 with several substituted aromatic aldehydes led to N‐(arylmethylidene)‐N′‐[3‐(phenothiazin‐10‐yl)propyl]ureas 3a – 3m , which, on treatment with ClCH2COCl in the presence of Et3N, furnished the desired racemic trans‐2‐oxoazetidin‐1‐carboxamide derivatives 4a – 4m . The structures of all new compounds were confirmed by IR, and 1H‐ and 13C‐NMR spectroscopy, FAB mass spectrometry, and chemical methods.  相似文献   

11.
Reaction of [Au(DAPTA)(Cl)] with RaaiR’ in CH2Cl2 medium following ligand addition leads to [Au(DAPTA)(RaaiR’)](Cl) [DAPTA=diacetyl-1,3,5-triaza-7-phosphaadamantane, RaaiR’=p-R-C6H4-N=N- C3H2-NN-1-R’, (1—3), abbreviated as N,N’-chelator, where N(imidazole) and N(azo) represent N and N’, respectively; R=H (a), Me (b), Cl (c) and R’=Me (1), CH2CH3 (2), CH2Ph (3)]. The 1H NMR spectral measurements in D2O suggest methylene, CH2, in RaaiEt gives a complex AB type multiplet while in RaaiCH2Ph it shows AB type quartets. 13C NMR spectrum in D2O suggest the molecular skeleton. The 1H-1H COSY spectrum in D2O as well as contour peaks in the 1H-13C HMQC spectrum in D2O assign the solution structure.  相似文献   

12.
The compounds N′‐benzylidene‐N‐methylpyrazine‐2‐carbohydrazide, C13H12N4O, (IIa), N′‐(2‐methoxybenzylidene)‐N‐methylpyrazine‐2‐carbohydrazide, C14H14N4O2, (IIb), N′‐(4‐cyanobenzylidene)‐N‐methylpyrazine‐2‐carbohydrazide dihydrate, C14H11N5O·2H2O, (IIc), N‐methyl‐N′‐(2‐nitrobenzylidene)pyrazine‐2‐carbohydrazide, C13H11N5O3, (IId), and N‐methyl‐N′‐(4‐nitrobenzylidene)pyrazine‐2‐carbohydrazide, C13H11N5O3, (IIe), have dihedral angles between the pyrazine rings and the benzene rings in the range 55–78°. These methylated pyrazine‐2‐carbohydrazides have supramolecular structures which are formed by weak C—H...O/N hydrogen bonds, with the exception of (IIc) which is hydrated. There are π–π stacking interactions in all five compounds. Three of these structures are compared with their nonmethylated counterparts, which have dihedral angles between the pyrazine rings and the benzene rings in the range 0–6°.  相似文献   

13.
The reaction of N,N′‐diarylselenoureas 16 with phenacyl bromide in EtOH under reflux, followed by treatment with NH3, gave N,3‐diaryl‐4‐phenyl‐1,3‐selenazol‐2(3H)‐imines 13 in high yields (Scheme 2). A reaction mechanism via formation of the corresponding Se‐(benzoylmethyl)isoselenoureas 18 and subsequent cyclocondensation is proposed (Scheme 3). The N,N′‐diarylselenoureas 16 were conveniently prepared by the reaction of aryl isoselenocyanates 15 with 4‐substituted anilines. The structures of 13a and 13c were established by X‐ray crystallography.  相似文献   

14.
The reaction of dichlorido(cod)palladium(II) (cod = 1,5‐cyclooctadiene) with 2‐(benzylsulfanyl)aniline followed by heating in N,N‐dimethylformamide (DMF) produces the linear trinuclear Pd3 complex bis(μ2‐1,3‐benzothiazole‐2‐thiolato)bis[μ2‐2‐(benzylsulfanyl)anilinido]dichloridotripalladium(II) N,N‐dimethylformamide disolvate, [Pd3(C7H4NS2)2(C13H12NS)2Cl2]·2C3H7NO. The molecule has symmetry and a Pd...Pd separation of 3.2012 (4) Å. The outer PdII atoms have a square‐planar geometry formed by an N,S‐chelating 2‐(benzylsulfanyl)anilinide ligand, a chloride ligand and the thiolate S atom of a bridging 1,3‐benzothiazole‐2‐thiolate ligand, while the central PdII core shows an all N‐coordinated square‐planar geometry. The geometry is perfectly planar within the PdN4 core and the N—Pd—N bond angles differ significantly [84.72 (15)° for the N atoms of ligands coordinated to the same outer Pd atom and 95.28 (15)° for the N atoms of ligands coordinated to different outer Pd atoms]. This trinuclear Pd3 complex is the first example of one in which 1,3‐benzothiazole‐2‐thiolate ligands are only N‐coordinated to one Pd centre. The 1,3‐benzothiazole‐2‐thiolate ligands were formed in situ from 2‐(benzylsulfanyl)aniline.  相似文献   

15.
The structures of 5‐(2‐hydroxyethyl)‐2‐[(pyridin‐2‐yl)amino]‐1,3‐thiazolidin‐4‐one, C10H11N3O2S, (I), and ethyl 4‐[(4‐oxo‐1,3‐thiazolidin‐2‐yl)amino]benzoate, C12H12N2O3S, (II), which are identical to the entries with refcodes GACXOZ [Váňa et al. (2009). J. Heterocycl. Chem. 46 , 635–639] and HEGLUC [Behbehani & Ibrahim (2012). Molecules, 17 , 6362–6385], respectively, in the Cambridge Structural Database [Allen (2002). Acta Cryst. B 58 , 380–388], have been redetermined at 130 K. This structural study shows that both investigated compounds exist in their crystal structures as the tautomer with the carbonyl–imine group in the five‐membered heterocyclic ring and an exocyclic amine N atom, rather than the previously reported tautomer with a secondary amide group and an exocyclic imine N atom. The physicochemical and spectroscopic data of the two investigated compounds are the same as those of GACXOZ and HEGLUC, respectively. In the thiazolidin‐4‐one system of (I), the S and chiral C atoms, along with the hydroxyethyl group, are disordered. The thiazolidin‐4‐one fragment takes up two alternative locations in the crystal structure, which allows the molecule to adopt R and S configurations. The occupancy factors of the disordered atoms are 0.883 (2) (for the R configuration) and 0.117 (2) (for the S configuration). In (I), the main factor that determines the crystal packing is a system of hydrogen bonds, involving both strong N—H...N and O—H...O and weak C—H...O hydrogen bonds, linking the molecules into a three‐dimensional hydrogen‐bond network. On the other hand, in (II), the molecules are linked via N—H...O hydrogen bonds into chains.  相似文献   

16.
Convergent syntheses of the 9‐(3‐X‐2,3‐dideoxy‐2‐fluoro‐β‐D ‐ribofuranosyl)adenines 5 (X=N3) and 7 (X=NH2), as well as of their respective α‐anomers 6 and 8 , are described, using methyl 2‐azido‐5‐O‐benzoyl‐2,3‐dideoxy‐2‐fluoro‐β‐D ‐ribofuranoside ( 4 ) as glycosylating agent. Methyl 5‐O‐benzoyl‐2,3‐dideoxy‐2,3‐difluoro‐β‐D ‐ribofuranoside ( 12 ) was prepared starting from two precursors, and coupled with silylated N6‐benzoyladenine to afford, after deprotection, 2′,3′‐dideoxy‐2′,3′‐difluoroadenosine ( 13 ). Condensation of 1‐O‐acetyl‐3,5‐di‐O‐benzoyl‐2‐deoxy‐2‐fluoro‐β‐D ‐ribofuranose ( 14 ) with silylated N2‐palmitoylguanine gave, after chromatographic separation and deacylation, the N7β‐anomer 17 as the main product, along with 2′‐deoxy‐2′‐fluoroguanosine ( 15 ) and its N9α‐anomer 16 in a ratio of ca. 42 : 24 : 10. An in‐depth conformational analysis of a number of 2,3‐dideoxy‐2‐fluoro‐3‐X‐D ‐ribofuranosides (X=F, N3, NH2, H) as well as of purine and pyrimidine 2‐deoxy‐2‐fluoro‐D ‐ribofuranosyl nucleosides was performed using the PSEUROT (version 6.3) software in combination with NMR studies.  相似文献   

17.
Two series of novel platinum(II) 2,6‐bis(1‐alkylpyrazol‐3‐yl)pyridyl (N5Cn) complexes, [Pt(N5Cn)Cl][X] ( 1 – 9 ) and [Pt(N5Cn)(C?CR)][X] ( 10 – 13 ) (X=trifluoromethanesulfonate (OTf) or PF6; R=C6H5, C6H4p‐CF3 and C6H4p‐N(C6H5)2), with various chain lengths of the alkyl groups on the nitrogen atom of the pyrazolyl units have been successfully synthesized and characterized. Their electrochemical and photophysical properties have been studied. Some of their molecular structures have also been determined by X‐ray crystallography. Two amphiphilic platinum(II) 2,6‐bis(1‐tetradecylpyrazol‐3‐yl)pyridyl (N5C14) complexes, [Pt(N5C14)Cl]PF6 ( 7 ) and [Pt(N5C14)(C?CC6H5)]PF6 ( 13 ), were found to form stable and reproducible Langmuir–Blodgett (LB) films at the air–water interface. The characterization of such LB films has been investigated by the study of their surface pressure–area (π–A) isotherms, UV/Vis spectroscopy, XRD, X‐ray photoelectron spectroscopy (XPS), FTIR, and polarized IR spectroscopy. The luminescence property of 13 in LB films has also been studied.  相似文献   

18.
4‐Hydroxy‐2‐vinyl‐2,3,4,5‐tetrahydro‐1‐benzazepine, C12H15NO, (I), and its 7‐fluoro and 7‐chloro analogues, namely 7‐fluoro‐4‐hydroxy‐2‐vinyl‐2,3,4,5‐tetrahydro‐1‐benzazepine, C12H14FNO, (II), and 7‐chloro‐4‐hydroxy‐2‐vinyl‐2,3,4,5‐tetrahydro‐1‐benzazepine, C12H14ClNO, (III), are isomorphous, but with variations in the unit‐cell dimensions which preclude in compound (III) one of the weaker intermolecular interactions found in compounds (I) and (II). Thus the compounds are not strictly isostructural in terms of the structurally significant intermolecular interactions, although the corresponding atomic coordinates are very similar. The azepine rings adopt chair conformations. The molecules are linked by a combination of N—H...O and O—H...N hydrogen bonds into chains of edge‐fused R33(10) rings, which in compounds (I) and (II) are further linked into sheets by a single C—H...π(arene) hydrogen bond. The significance of this study lies in its observation of isomorphism in compounds (I)–(III), and its observation of a sufficient variation in one of the cell dimensions effectively to alter the range of significant hydrogen bonds present in the crystal structures.  相似文献   

19.
The SnCl4‐catalyzed reaction of (?)‐thiofenchone (=1,3,3‐trimethylbicyclo[2.2.1]heptane‐2‐thione; 10 ) with (R)‐2‐phenyloxirane ((R)‐ 11 ) in anhydrous CH2Cl2 at ?60° led to two spirocyclic, stereoisomeric 4‐phenyl‐1,3‐oxathiolanes 12 and 13 via a regioselective ring enlargement, in accordance with previously reported reactions of oxiranes with thioketones (Scheme 3). The structure and configuration of the major isomer 12 were determined by X‐ray crystallography. On the other hand, the reaction of 1‐methylpyrrolidine‐2‐thione ( 14a ) with (R)‐ 11 yielded stereoselectively (S)‐2‐phenylthiirane ((S)‐ 15 ) in 56% yield and 87–93% ee, together with 1‐methylpyrrolidin‐2‐one ( 14b ). This transformation occurs via an SN2‐type attack of the S‐atom at C(2) of the aryl‐substituted oxirane and, therefore, with inversion of the configuration (Scheme 4). The analogous reaction of 14a with (R)‐2‐{[(triphenylmethyl)oxy]methyl}oxirane ((R)‐ 16b ) led to the corresponding (R)‐configured thiirane (R)‐ 17b (Scheme 5); its structure and configuration were also determined by X‐ray crystallography. A mechanism via initial ring opening by attack at C(3) of the alkyl‐substituted oxirane, with retention of the configuration, and subsequent decomposition of the formed 1,3‐oxathiolane with inversion of the configuration is proposed (Scheme 5).  相似文献   

20.
In the title coordination polymer, {[Cd(C6H8O4S)(C13H14N2)]·H2O}n, the CdII atom displays a distorted octahedral coordination, formed by three carboxylate O atoms and one S atom from three different 3,3′‐thiodipropionate ligands, and two N atoms from two different 4,4′‐(propane‐1,3‐diyl)dipyridine ligands. The CdII centres are bridged through carboxylate O atoms of 3,3′‐thiodipropionate ligands and through N atoms of 4,4′‐(propane‐1,3‐diyl)dipyridine ligands to form two different one‐dimensional chains, which intersect to form a two‐dimensional layer. These two‐dimensional layers are linked by S atoms of 3,3′‐thiodipropionate ligands from adjacent layers to form a three‐dimensional network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号