首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, Prussian blue (PB) film on the electroreduced graphene oxide (ERGO)‐modified Au electrode surface (ERGO/PB) is easily prepared by means of cyclic voltammetric technique in the mixture of K3Fe(CN)6 and FeCl3. Its electrochemical behaviors for NADH biosensor are studied. The structural and morphological characters of modified electrode material are analyzed with using of XPS, XRD, Raman, EDS, and SEM techniques. ERGO/PB hybrid nanocomposite for NADH biosensor is exhibited to the higher catalytic effect (linear range from 1.0 to 100 μM, detection limit of 0.23 μM at S/N=3) compared to naked Au, ERGO‐modified Au, and PB‐modified Au electrodes. In addition to, ERGO/PB electrode was used to voltammetric and amperometric detection of H2O2. ERGO/PB electrodes also showed the same behavior as the NADH sensor. This ERGO/PB‐modified electrode supplied a simple, new, and low‐cost route for amperometric sensing of both NADH and H2O2.  相似文献   

2.
We report the synthesis and the electrochemical properties of hybrid films made of zinc oxide (ZnO) and Meldola's blue dye (MB) using cyclic voltammetry (CV). MB/ZnO hybrid films were electrochemically deposited onto glassy carbon, gold and indium tin oxide-coated glass (ITO) electrodes at room temperature (25 ± 2 °C) from the bath solution containing 0.1 M Zn(NO3)2, 0.1 M KNO3 and 1 × 10−4 M MB. The surface morphology and deposition kinetics of MB/ZnO hybrid films were studied by means of scanning electron microscopy (SEM), atomic force microscopy (AFM) and electrochemical quartz crystal microbalance (EQCM) techniques, respectively. SEM and AFM images of MB/ZnO hybrid films have revealed that the surfaces are well crystallized, porous and micro structured. MB molecules were immobilized and strongly fixed in a transparent inorganic matrix. MB/ZnO hybrid films modified glassy carbon electrode (MB/ZnO/GC) showed one reversible redox couple centered at formal potential (E0′) −0.12 V (pH 6.9). The surface coverage (Γ) of the MB immobilized on ZnO/GC was about 9.86 × 10−12 mol cm−2 and the electron transfer rate constant (ks) was determined to be 38.9 s−1. The MB/ZnO/GC electrode acted as a sensor and displayed an excellent specific electrocatalytic response to the oxidation of nicotinamide adenine dinucleotide (NADH). The linear response range between 50 and 300 μM NADH concentration at pH 6.9 was observed with a detection limit of 10 μM (S/N = 3). The electrode was stable during the time it was used for the full study (about 1 month) without a notable decrease in current. Indeed, dopamine (DA), ascorbic acid (AA), acetaminophen (AP) and uric acid (UA) did not show any interference during the detection of NADH at this modified electrode.  相似文献   

3.
《Analytical letters》2012,45(7):1236-1247
Abstract

The 6-ferrocenylhexanethiol (FcC6SH) functionalized multiwall carbon nanotubes (MWNTs) modified glassy carbon electrode (FcC6SH/MWNTs/GCE) was easily fabricated and used for the sensitive detection of NADH. Cyclic voltammetric and amperometric methods were used to study the behavior of NADH on the FcC6SH/MWNTs/GCE. A broader linear response range to the NADH concentration from 5 µM to 1.5 mM with a correlation coefficient of 0.9982 was obtained. The detection limit was 0.54 µM. The synergetic effects of FcC6SH and MWNTs make the modified electrode highly sensitive to NADH. In addition, the modified electrode can decrease the fouling of the electrode surface.  相似文献   

4.
Chang H  Wu X  Wu C  Chen Y  Jiang H  Wang X 《The Analyst》2011,136(13):2735-2740
A self-assembly hybrid of gold nanoparticles on graphene modified electrodes for low-potential NADH detection has been achieved. We used the natural polymer chitosan (Chit) to assist the stabilization of graphene in aqueous solution, and immobilize the electronegative Au nanoparticles (NPs) through electrostatic attraction. The synergy of Au NPs with graphene for catalytic oxidation of NADH made the overpotential ca. 220 mV less positive than that on the bare electrode, and remarkably increased the oxidation current. The amperometric sensors based on such modified electrodes for detection of NADH exhibited a good linearity from 1.5 to 320 μM, and showed high sensitivity with a low detection limit of 1.2 μM (S/N = 3). It could also exclude common interfering electroactive compounds like ascorbic acid and possessed good reproducibility and operational stability. Such eminent performance of the Au-RGO/Chit film together with the ability of graphene to significantly enhance the electron transfer between enzymes and the electrode suggested its promise for constructing novel graphene based dehydrogenase biosensors.  相似文献   

5.
Novel magnetic chitosan‐coated microspheres (MCMSs) were prepared by modifying carbon‐coated iron magnetic nanoparticles with chitosan. An amperometric dihydronicotinamide adenine dinucleotide (NADH) sensor was constructed based on immobilizing MCMS on the surface of a polythionine (PTH) modified glassy carbon electrode (GCE). The fabrication of MCMS/PTH film and its electrocatalytic effect on electrochemical oxidation of NADH were investigated by electrochemical impedance spectroscopy (EIS) and voltammetric methods. It was found that the resulting integrated films of PTH and MCMS exhibit high electrocatalytic response to NADH by significantly reduce its overpotential. The effects of the experimental variables on the amperometric determination of NADH such as solution pH and working potential were investigated for optimum analytical performance. This electrochemical sensor had a fast response to NADH which was less than 10 s. Linear response ranges of 2–10 μM and 10–100 μM and a detection limit of 0.51 μM (S/N=3) were obtained under the optimum conditions. Moreover, the selectivity, stability and reproducibility of this biosensor was evaluated with satisfactory results.  相似文献   

6.
Electrochemical behavior of dopamine at the RuO2‐modified vertically aligned carbon nanotubes electrode was investigated by cyclic voltammetry, differential pulse voltammetry and chronoamperometry. The RuO2‐modified carbon nanotube electrode showed higher electrocatalytic activity towards the oxidation of dopamine than the MWNTs electrode in 0.10 M phosphate buffer solution. At an applied potential of +0.4 V, the RuO2/MWNTs electrode exhibited a wide detection range up to 3.6×10?3 M with detection limit of 6.0×10?8 M (signal/noise=3) for dopamine determination. Meanwhile, the optimized sensor for dopamine displayed a sensitivity of 83.8 μA mM?1 and response time of 5 s with addition of 0.20 mM dopamine. In addition, DPV experiment revealed that interfering species such as ascorbic acid and uric acid could be effectively avoided. The RuO2/MWNTs electrode presents stable, highly sensitive, favorable selectivity and fast amperometric response of dopamine.  相似文献   

7.
A new H2O2 enzymeless sensor has been fabricated by incorporation of thionin onto multiwall carbon nanotubes (MWCNTs) modified glassy carbon electrode. First 50 μL of acetone solution containing dispersed MWCNTs was pipetted onto the surface of GC electrode, then, after solvent evaporations, the MWCNTs modified GC electrode was immersed into an aqueous solution of thionin (electroless deposition) for a short period of time <5–50 s. The adsorbed thin film of thionin was found to facilitate the reduction of hydrogen peroxide in the absence of peroxidase enzyme. Also the modified electrode shows excellent catalytic activity for oxygen reduction at reduced overpotential. The rotating modified electrode shows excellent analytical performance for amperometric determination of hydrogen peroxide, at reduced overpotentials. Typical calibration at ?0.3 V vs. reference electrode, Ag/AgCl/3 M KCl, shows a detection limit of 0.38 μM, a sensitivity of 11.5 nA/μM and a liner range from 20 μM to 3.0 mM of hydrogen peroxide. The glucose biosensor was fabricated by covering a thin film of sol–gel composite containing glucose oxides on the surface of thionin/MWCNTs modified GC electrode. The biosensor can be used successfully for selective detection of glucose based on the decreasing of cathodic peak current of oxygen. The detection limit, sensitivity and liner calibration rang were 1 μM, 18.3 μA/mM and 10 μM–6.0 mM, respectively. In addition biosensor can reach 90% of steady currents in about 3.0 s and interference effect of the electroactive existing species (ascorbic acid–uric acid and acetaminophen) is eliminated. The usefulness of biosensor for direct glucose quantification in human blood serum matrix is also discussed. This sensor can be used as an amperometric detector for monitoring oxidase based biosensors.  相似文献   

8.
The toluidine blue O (TBO) functionalized multiwall carbon nanotubes (MWNTs) nanomaterials (TBO-MWNTs) were prepared by assembling TBO onto the surface of a MWNTs modified glassy carbon (GC) electrode. Also TBO-MWNTs modified GC electrodes exhibiting a strong and stable electrocatalytic response toward beta-nicotinamide adenine dinucleotide (NADH) were described. Compared with a bare GC electrode, the TBO-MWNTs modified GC electrodes could decrease the oxidization overpotential of NADH by 730 mV, with a peak current at 0.0 V, since there was a positively synergistic electrocatalytic effect between the MWNTs and TBO toward NADH. Furthermore, the TBO-MWNTs modified GC electrodes had perfect performances, such as a low detection limit (down to 0.5 microM), being very stable (the current diminutions is lower than 6% in a period over 35 min), a fast response (within 3 s), and a wide linear range (from 2.0 microM to 3.5 mM). Such an ability of TBO-MWNTs to promote the NADH electron-transfer reaction suggests great promise for dehydrogenase-based amperometric biosensors.  相似文献   

9.
Highly sensitive amperometric detection of dihydronicotinamide adenine dinucleotide (NADH) by using novel synthesized carbon nanofibers (CNFs) without addition of any mediator has been proposed. The CNFs were prepared by combination of electrospinning technique with thermal treatment method and were applied without any oxidation pretreatment to construct the electrochemical sensor. In amperometric detection of NADH, a linear range up to 11.45 μM with a low detection limit of 20 nM was obtained with the CNF‐modified carbon paste electrode (CNF‐CPE). Good selectivity was exhibited for the simultaneous detection of NADH and its common interferent of ascorbic acid (AA) by differential pulse voltammogram. The attractive electrochemical performance and the versatile preparation process of the CNF‐CPE made it a promising candidate for designing effective NADH sensor.  相似文献   

10.
We report on a glassy carbon electrode (GCE) modified with a film of chitosin containing acid fuchsin (AF) adsorbed onto zirconia nanotubes. The mixture was polymerized by cyclic voltammetric scannings in the potential range from - 0.8?V to +1.3?V in buffer solution to produce a hybrid film electrode (nano-ZrO2/PAF/GCE). The morphology of the hybrid film electrode surface was characterized by scanning electron microscopy. Its electrochemical properties were studied via electrochemical impedance spectroscopy. The electrochemical response of nicotinamide adenine dinucleotide (NADH) was investigated by differential pulse voltammetry and amperometry. The results indicated that the nano-ZrO2/PAF/GCE possesses well synergistic catalytic activity towards NADH. Compared to an unmodified GCE, the oxidation overpotential is negatively shifted by 224?mV, and the oxidation current is significantly increased. Under optimal conditions, the amperometric response is linearly proportional to the concentration of NADH in the 1.0 – 100.0?μM concentration range. Ethanol also can be determined by amperometry if alcohol dehydrogenase and NADH are added to the sample. Two linear relationships between current and alcohol concentration were obtained. They cover the range from 0.03 to 1.0?mM, and from 1.0 to 12.0?mM.
Figure
Figure A ZrO2 nanotubes/poly(acid fuchsin) hybrid film modified glassy carbon electrode was electrochemically fabricated. The oxidation overpotential of NADH at the developed nano-ZrO2/PAF/GCE was negatively shifed and the oxidation current was significantly increased. The nano-ZrO2/PAF/GCE was successfully applied to determine NADH and ethanol.  相似文献   

11.
Titanium‐containing MCM‐41 (Ti‐MCM‐41) modified glassy carbon electrode (GCE) can exhibit an excellent electrocatalytic activity towards the oxidation of β‐Nicotinamide adenine dinucleotide (NADH). A dramatic decrease in the overvoltage of NADH oxidation reaction is observed at 0.28 V vs. SCE. The application in the amperometric biosensing of ethanol using alcohol dehydrogenase enzyme (ADH) also has been demonstrated with this material. The proposed sensor shows a highly sensitivity, an acceptable reproducibility and a good stability. The linear range of ethanol is 25–1000 μM and the detection limit is 8.0 μM. Ti‐MCM‐41 modified electrode not only can be used to detect the concentration of NADH in biochemical reaction, but also as the potential matrix for the construction of dehydrogenases sensor.  相似文献   

12.
Through layer-by-layer adsorption (LBL) technique, the positively charged multiwalled carbon nanotubes (MWCNTs) and negatively charged graphene multilayer film were formed on graphite-poly(diallyldimethylammoniumchloride)-polystyrenesulphonate (Gr/PDDA/PSS) modified electrode. Due to large surface area and remarkable electrocatalytic properties of MWCNTs and graphene, the Gr/(PDDA/PSS-[MWCNTs-NH 3 + -graphene-COO?]5) electrode exhibits potent electrocatalytic activity towards the electro-oxidation of nicotinamide adenine dinucleotide (NADH). A substantial decrease in the overpotential was observed at modified electrode, and the electrode showed high sensitivity to the electrocatalytic oxidation of NADH. The modified electrode was characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The diffusion coefficient was calculated by chronocoulometry. Chronoamperometric studies showed the linear relationship between oxidation peak current and the concentration of NADH in the range 25–250?μM (R?=?0.999) with the detection limit of 0.1?μM (S/N?=?3). Further, dopamine, uric acid, acetaminophen and hydrogen peroxide do not interfere in the detection of NADH. The ability of MWCNTs and graphene to promote the electron transfer between NADH and the electrode exhibits a promising biocompatible platform for development of dehydrogenase-based amperometric biosensors. Alcohol dehydrogenase (ADH) was casted on Gr/(PDDA/PSS-[MWCNTs-NH 3 + -graphene-COO?]5) electrode; the resulting biosensor showed rapid and high sensitive amperometric response to ethanol with the detection limit of 10?μM (S/N?=?3).  相似文献   

13.
An amperometric ethanol biosensor was fabricated by integration of alcohol dehydrogenase (ADH) with meldola's blue (MB)/ordered mesoporous carbon (OMC) composite modified glassy carbon electrode (MB/OMC/GCE). The MB/OMC/GCE was highly sensitive for nicotinamide adenine dinucleotide (NADH) measurement (9.1±0.25 μA/mM) and gave a low detection limit of 0.21±0.02 μM. The ethanol biosensor exhibited a wide linear range up to 6 mM with a lower detection limit of 19.1±0.58 μM as well as a high sensitivity of 34.58±2.43 nA/mM without suffering any interference from some common electroactive compounds.  相似文献   

14.
An electroactive polynuclear hybrid films of zinc oxide and zinc hexacyanoferrate (ZnO/ZnHCF) have been deposited on electrode surfaces from H2SO4 solution containing Zn(NO3)2 and K3[Fe(CN)6] by repetitive potential cycling method. Simultaneous cyclic voltammetry and electrochemical quartz crystal microbalance (EQCM) measurements demonstrate the steady growth of hybrid film. There are two redox couples present in the voltammograms of hybrid film and it is obvious in the case of pH 2. Surface morphology of hybrid film was investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Energy dispersive spectrometer (EDS) data confirm existence of zinc oxide in the hybrid film. The effect of type of monovalent cations on the redox behavior of resulting film was investigated. In pure supporting electrolyte, electrochemical responses of modified electrode resemble with that of a surface immobilized redox couple. The electrocatalytic activity of ZnO/ZnHCF hybrid film was investigated towards guanine using cyclic voltammetry and rotating disc electrode (RDE) techniques. Finally, feasibility of using ZnO/ZnHCF hybrid film‐coated electrodes for guanine estimation in flow injection analysis (FIA) was also investigated.  相似文献   

15.
The electrocatalytic oxidation of nicotinamide adenine dinucleotide (NADH) was studied on nanoTiO2 modified sol‐gel electrode, using cyclic voltammetry, chronoamperometry and differential pulse voltammetry as diagnostic techniques. It is demonstrated that TiO2 nanoparticles on sol‐gel network catalyze the oxidation of NADH in the absence of any electron transfer mediators. Effect of various parameters such as pH, scan rate, TiO2 percentage on the response of modified electrode was studied. In addition, scanning electron microscopy (SEM) was used to characterize the surface morphology of the spots. A dynamic range between 0.5–50 μM with detection limit of 0.35 μM was obtained with DPV studies. This method was successfully used for determination of NADH in cucumber cotyledons samples. The electrode showed relatively good stability over more than 2 months.  相似文献   

16.
Salimi A  Hallaj R  Ghadermazi M 《Talanta》2005,65(4):888-894
The carbon ceramic electrode prepared with sol-gel technique is modified by a thin film of chlorogenic acid (CGA). By immersing the carbon ceramic electrode in aqueous solution of chlorogenic acid at less than 2 s a thin film of chlorogenic acid adsorbed strongly and irreversibly on the surface of electrode. The cyclic voltammetry of the resulting modified CCE prepared at optimum conditions shows a well-defined stable reversible redox couple due to hydroquinone/quinone system in both acidic and basic solutions. The modified electrode showed excellent electrocatalytic activity toward NADH oxidation and it also showed a high analytical performance for amperometric detection of NADH. The catalytic rate constant of the modified carbon ceramic electrode for the oxidation of NADH is determined by cyclic voltammetry measurement. Under the optimised conditions the calibration curve is linear in the concentration range 1-120 μm. The detection limit (S/N = 3) and sensitivity are 0.2 μM and 25 nA μM−1.The results of six successive measurement-regeneration cycles show relative standard deviations of 2.5% for electrolyte solution containing 1 mM NADH, indicating that the electrode renewal gives a good reproducible and antifouling surface. The advantages of this amperometric detector are: high sensitivity, excellent catalytic activity, short response time t < 2 s, remarkable long-term stability, simplicity of preparation at short time and good reproducibility.  相似文献   

17.
In this paper, we fabricate a sensitive and stable amperometric UA amperometric biosensor using nanobiocomposite derived from thionine modified graphene oxide in this study. A simple wet-chemical strategy for synthesis of thionine–graphene oxide hybrid nanosheets (T–GOs) through π–π stacking has been demonstrated. Various techniques, such as UV–vis absorption spectroscopy, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), atomic force microscopy (AFM) and electrochemistry have been utilized to characterize the formation of the T–GOs. Due to the synergistic effect between thionine and graphene oxide, the nanosheets exhibited excellent performance toward H2O2 reduction. The incorporation of thionine onto graphene oxide surface resulted in more than a twice increase in the amperometric response to H2O2 of the thionine modified electrode. The as-formed T–GOs also served as a biocompatible matrix for enzyme assembly and a mediator to facilitate the electron transfer between the enzyme and the electrode. Using UOx as a model system, we have developed a simple and effective sensing platform for assay of uric acid at physiological levels. UA has been successfully detected at −0.1 V without any interference due to other electroactive compounds at physiological levels of glucose (5 mM), ascorbic acid (0.1 mM), noradrenalin (0.1 mM), and dopamine (0.1 mM). The response displays a good linear range from 0.02 to 4.5 mM with detection limit 7 μM. The application of this modified electrode in blood and urine UA exhibited a good performance. The robust and advanced hybrid materials might hold great promise in biosensing, energy conversion, and biomedical and electronic systems.  相似文献   

18.
《Electroanalysis》2005,17(9):739-743
Flow injection analysis (FIA) of sulfide is presented using a screen‐printed carbon electrode modified with a cinder/tetracyano nickelate hybrid (designated as cinder/NiTcSPE). Hybridization of NiTc was achieved in iron‐enriched industrial waste cinder material through the bimetallic formation of FeIII[NiII(CN)4]. The electrocatalytic oxidation of sulfide is mediated by the higher oxidation state of Ni in this hybrid‐bimetallic complex. The system shows a detection limit (S/N=3) of 0.06 μM and a linear working range up to 1 mM in pH 10, 0.1 M KCl solution. Taking into account the relatively low volatility of the analyte in alkaline conditions, the system is ideally suited for the accurate detection of sulfide. The response of the electrode to sulfide is highly reproducible, thereby offering the potential development of a disposable amperometric sensor for sulfide. Selective detection of sulfide in cigarette smoke is presented in this study as an example of a real sample application.  相似文献   

19.
The redox mediator Meldola blue (MB) was entrapped into two polymers, poly‐1,2‐diaminobenzene (p‐DAB) and poly‐3,4‐ethylenedioxythiophene (p‐EDOT) by potential cycling and films were applied to NADH oxidation with subsequent glutamate detection using immobilized glutamate dehydrogenase. Both polymer films were tested for electrocatalysis of NADH using amperometry at Eapp=0.1 V vs. Ag/AgCl and similar response characteristics were obtained with sensitivity values of 6.1 nA μM?1, linear range up to 0.5 mM (R2=0.9972) and LOD of 50 μM. Subsequent amperometric determination of glutamate resulted in sensitivity 0.7 nA μM?1, linearity 0–100 μM and detection limit of 2 μM glutamate.  相似文献   

20.
利用多巴胺易于在电极表面发生自聚反应,且聚多巴胺膜中富含邻苯二酚等反应性基团,可通过二次反应实现电极表面的进一步功能化修饰的特点,在玻碳电极(GCE)表面,将多巴胺自聚膜(PDA)与铜微粒(Cu)进行层-层自组装,构建了无酶葡萄糖电化学传感器(GCE/(PDA/ Cu) n )。传感器的灵敏度可通过控制多层膜的组装层数进行调控。采用紫外-可见光谱跟踪表征了多层膜的组装过程,结果表明,多层膜的生长是逐步且均匀的过程。采用循环伏安法和电流-时间曲线法研究了修饰电极对葡萄糖的电催化氧化性能。对于GCE/(PDA/ Cu)4,检测葡萄糖的线性范围为0.5~9.0 mmol/ L,检出限为5.8μmol/ L(S/ N=3)。本传感器具有良好的重现性、稳定性和较强的抗干扰能力。将本传感器用于血清中葡萄糖的测定,结果令人满意。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号