首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ligand L, based on two do3a moieties linked by the methylene groups of 6,6′‐dimethyl‐2,2′‐bipyridine, was synthesized and characterized. The addition of Ln salts to an aqueous solution of L (0.01 M Tris‐HCl, pH 7.4) led to the successive formation of [LnL] and [Ln2L] complexes, as evidenced by UV/Vis and fluorescence titration experiments. Homodinuclear [Ln2L] complexes (Ln=Eu, Gd, Tb, Yb, and Lu) were prepared and characterized. The 1H and 13C NMR spectra of the Lu and Yb complexes in D2O solution (pD=7.0) showed C1 symmetry of these species in solution, pointing to two different chemical environments for the two lanthanide cations. The analysis of the chemical shifts of the Yb complex indicated that the two coordination sites present square antiprismatic (SAP) coordination environments around the metal ions. The spectroscopic properties of the [Tb2L] complex upon ligand excitation revealed conventional behavior with τH2O=2.05(1) ms and ?H2O=51 %, except for the calculation of the hydration number obtained from the luminescent lifetimes in H2O and D2O, which pointed to a non‐integer value of 0.6 water molecules per TbIII ion. In contrast, the Eu complex revealed surprising features such as: 1) the presence of two and up to five components in the 5D07F0 and 5D07F1 emission bands, respectively; 2) marked differences between the normalized spectra obtained in H2O and D2O solutions; and 3) unconventional temporal evolution of the luminescence intensity at certain wavelengths, the intensity profile first displaying a rising step before the occurrence of the expected decay. Additional spectroscopic experiments performed on [Gd2?xEuxL] complexes (x=0.1 and 1.9) confirmed the presence of two distinct Eu sites with hydration numbers of 0 (site I) and 2 (site II), and showed that the unconventional temporal evolution of the emission intensity is the result of an unprecedented intramolecular Eu‐to‐Eu energy‐transfer process. A mathematical model was developed to interpret the experimental data, leading to energy‐transfer rates of 0.98 ms?1 for the transfer from the site with q=0 to that with q=2 and vice versa. Hartree–Fock (HF) and density functional theory (DFT) calculations performed at the B3LYP level were used to investigate the conformation of the complex in solution, and to estimate the intermetallic distance, which provided Förster radii (R0) values of 8.1 Å for the energy transfer from site I to site II, and 6.8 Å for the reverse energy transfer. These results represent the first evidence of an intramolecular energy‐transfer equilibrium between two identical lanthanide cations within a discrete molecular complex in solution.  相似文献   

2.
The release of uranyl(VI) is a hazardous environmental issue, with limited ways to monitor accumulation in situ. Here, we present a method for the detection of uranyl(VI) ions through the utilization of a unique fluorescence energy transfer process to europium(III). Our system displays the first example of a “turn‐on” europium(III) emission process with a small, water‐soluble lanthanide complex triggered by uranyl(VI) ions.  相似文献   

3.
Four conjugated push–pull organometallic polymers ( [Pt]‐AQ )n ( [Pt] = trans‐bis(phenylacetylene)bis(tributylphosphine)platinum(II); AQ = 2‐bromo‐, 2,6‐dibromo‐, 2,6‐diamino‐, and unsubstituted anthraquinone diimine) were prepared and characterized by UV–vis spectroscopy and electrochemistry. A low‐energy charge transfer, CT, band ( [Pt] *→ AQ ; confirmed by density functional theory calculations), was found in the 445–500 nm window rather than the expected red‐shifted range above 630 nm. X‐ray structures of four model compounds reveal that steric hindrance induces large dihedral angles between the C6H4 and NCC2 planes, rendering π‐orbital overlap difficult between the [Pt] and AQ units. The position of the CT band is mainly driven the reduction potential of the anthraquinone diimine unit.  相似文献   

4.
The excitation energy transfer (EET) pathways in the sensitization luminescence of EuIII and the excitation energy migration between the different ligands in [Eu(fod)3dpbt] [where fod=6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedione and dpbt=2-(N,N-diethylanilin-4-yl)-4,6-bis(3,5-dimethylpyrazol-1-yl)-1,3,5-triazine], exhibiting well-separated fluorescence excitation and phosphorescence bands of the different ligands, were investigated by using time-resolved luminescence spectroscopy for the first time. The data clearly revealed that upon the excitation of dpbt, the sensitization luminescence of EuIII in [Eu(fod)3dpbt] was dominated by the singlet EET pathway, whereas the triplet EET pathway involving T1(dpbt) was inefficient. The energy migration from T1(dpbt) to T1(fod) in [Eu(fod)3dpbt] was not observed. Moreover, upon the excitation of fod, a singlet EET pathway for the sensitization of EuIII luminescence, including the energy migration from S1(fod) to S1(dpbt) was revealed, in addition to the triplet EET pathway involving T1(fod). Under the excitation of dpbt at 410 nm, [Eu(fod)3dpbt] exhibited an absolute quantum yield for EuIII luminescence of 0.59 at 298 K. This work provides a solid and elegant example for the concept that singlet EET pathway could dominate the sensitization luminescence of EuIII in some complexes.  相似文献   

5.
The synergistic effect between Pt and WC is beneficial for methanol electro‐oxidation, and makes Pt–WC catalyst a promising anode candidate for the direct methanol fuel cell. This paper reports on the design and synthesis of small‐sized and contacting Pt–WC nanostructures on graphene that bring the synergistic effect into full play. Firstly, DFT calculations show the existence of a strong covalent interaction between WC and graphene, which suggests great potential for anchoring WC on graphene with formation of small‐sized, well‐dispersed WC particles. The calculations also reveal that, when Pt attaches to the pre‐existing WC/graphene hybrid, Pt particles preferentially grow on WC rather than graphene. Our experiments confirmed that highly disperse WC nanoparticles (ca. 5 nm) can indeed be anchored on graphene. Also, Pt particles 2–3 nm in size are well dispersed on WC/graphene hybrid and preferentially grow on WC grains, forming contacting Pt–WC nanostructures. These results are consistent with the theoretical findings. X‐ray absorption fine structure spectroscopy further confirms the intimate contact between Pt and WC, and demonstrates that the presence of WC can facilitate the crystallinity of Pt particles. This new Pt–WC/graphene catalyst exhibits a high catalytic efficiency toward methanol oxidation, with a mass activity 1.98 and 4.52 times those of commercial PtRu/C and Pt/C catalysts, respectively.  相似文献   

6.
Triangular luminescent box : Self‐assembly of a new multidentate receptor with europium cations results in the formation of trinuclear discrete complexes. X‐ray crystallography shows that nine‐coordinate cations are linked by ligands to provide a triangular complex in the solid state and in solution. Despite the coordinated solvent molecules, this topologically unusual complex exhibits remarkable luminescent properties.

  相似文献   


7.
8.
Novel EuIII coordination polymers [Eu(hfa)3(dpt)]n (dpt: 2,5‐bis(diphenylphosphoryl)thiophene) and [Eu(hfa)3(dpedot)]n (dpedot: 2,5‐bis(diphenylphosphoryl)ethylenedioxythiophene) with hydrogen‐bonded zipper structures are reported. The coordination polymers are composed of EuIII ions, hexafluoroacetylacetonato ligands, and thiophene‐based phosphine oxide bridges. The zig‐zag orientation of single polymer chains induced the formation of densely packed coordination structures with multiple intermolecular interactions, resulting in thermal stability above 300 °C. They exhibit a high intrinsic emission quantum yield (ca. 80 %) due to their asymmetrical and low‐vibrational coordination structures around EuIII ions. Furthermore, the characteristic alternative orientation of substituents also contributes to the dramatically high ligand‐to‐metal energy transfer efficiencies of up to 80 % in the solid state.  相似文献   

9.
10.
To obtain noble metal catalysts with high efficiency, long‐term stability, and poison resistance, Pt and Pd are assembled in highly ordered and vertically aligned TiO2 nanotubes (NTs) by means of the pulsed‐current deposition (PCD) method with assistance of ultrasonication (UC). Here, Pd serves as a dispersant which prevents agglomeration of Pt. Thus Pt–Pd binary catalysts are embed into TiO2 NTs array under UC in sunken patterns of composite spherocrystals (Sps). Owing to this synthesis method and restriction by the NTs, the these catalysts show improved dispersion, more catalytically active sites, and higher surface area. This nanotubular metallic support material with good physical and chemical stability prevents catalyst loss and poisoning. Compared with monometallic Pt and Pd, the sunken‐structured Pt–Pd spherocrystal catalyst exhibits better catalytic activity and poison resistance in electrocatalytic methanol oxidation because of its excellent dispersion. The catalytic current density is enhanced by about 15 and 310 times relative to monometallic Pt and Pd, respectively. The poison resistance of the Pt–Pd catalyst was 1.5 times higher than that of Pt and Pd, and they show high electrochemical stability with a stable current enduring for more than 2100 s. Thus, the TiO2 NTs on a Ti substrate serve as an excellent support material for the loading and dispersion of noble metal catalysts.  相似文献   

11.
Eu2SiO3Cl2 and Eu5SiO4Cl6 were prepared by reaction of EuCl2 with EuSiO3 and Eu2SiO4, respectively, Sr2SiO3Cl2: Eu2+ from mixtures of SrCO3, Eu2O3, SrCl2 · 6H2O and SiO2 under reducing conditions. The crystal structures of Eu2SiO3Cl2 [a = 1118.7(5), c = 952.6(1) pm, tetragonal, I4/m, Z = 8, R = 3.3, Rw = 3.0%] and Eu5SiO4Cl6 [a = 900.4(1), b = 1401.7(2), c = 1112.3(2) pm, β = 103.51(1)°, monoclinic, C2/c, Z = 4, R = 3.6, Rw = 2.6%] were determined from four-circle diffractometer data and compared with related compounds. The luminescence properties were investigated at 300 K and at 4.2 K; all compounds show intense bluish-green photoluminescence. Sr2SiO3Cl2:Eu2+ shows thermoluminescence.  相似文献   

12.
Four anionic europium complexes are described based on triazacyclononane tris‐carboxylate or phosphinate ligands. In each case, the three sensitising chromophores comprise a substituted aryl–alkynyl pyridine group, with complex brightness in water falling in the range 4 to 23 mM ?1 cm?1. para‐Substitution of the aryl ring with carboxymethyl groups gives complexes that are taken into cells, stain the lysosomes selectively and unexpectedly permit lifetime measurements of lysosomal pH. In contrast, the introduction of sulfonate groups inhibits cell uptake enabling the Eu complex to be used as an extracellular donor for FRET applications at the membrane surface. Using time‐gated FRET microscopy, the cell membrane structure was highlighted, in which Cell Mask Deep Red was used as a membrane‐ localized FRET acceptor.  相似文献   

13.
The first example of cell imaging using two independent emission components from a dinuclear d/f complex is reported. A water‐stable, cell‐permeable IrIII/EuIII dyad undergoes partial Ir→Eu energy transfer following two‐photon excitation of the Ir unit at 780 nm. Excitation in the near‐IR region generated simultaneously green Ir‐based emission and red Eu‐based emission from the same probe. The orders‐of‐magnitude difference in their timescales (Ir ca. μs; Eu ca. 0.5 ms) allowed them to be identified by time‐gated detection. Phosphorescence lifetime imaging microscopy (PLIM) allowed the lifetime of the Ir‐based emission to be measured in different parts of the cell. At the same time, the cells are simultaneously imaged by using the Eu‐based emission component at longer timescales. This new approach to cellular imaging by using dual d/f emitters should therefore enable autofluorescence‐free sensing of two different analytes, independently, simultaneously and in the same regions of a cell.  相似文献   

14.
The chemical dealloying mechanism of bimetallic Pt–Co nanoparticles (NPs) and enhancement of their electrocatalytic activity towards the oxygen reduction reaction (ORR) have been investigated on a fundamental level by the combination of X‐ray absorption spectroscopy (XAS) and aberration‐corrected scanning transmission electron microscopy (STEM). Structural parameters, such as coordination numbers, alloy extent, and the unfilled d states of Pt atoms, are derived from the XAS spectra, together with the compositional variation analyzed by line‐scanning energy‐dispersive X‐ray spectroscopy (EDX) on an atomic scale, to gain new insights into the dealloying process of bimetallic Pt–Co NPs. The XAS results on acid‐treated Pt–Co/C NPs reveal that the Co–Co bonding in the bimetallic NPs dissolves first and the remaining morphology gradually transforms to a Pt‐skin structure. From cyclic voltammetry and mass activity measurements, Pt–Co alloy NPs with a Pt‐skin structure significantly enhance the catalytic performance towards the ORR. Further, it is observed that such an imperfect Pt‐skin surface feature will collapse due to the penetration of electrolyte into layers underneath and cause further dissolution of Co and the loss of Pt. The electrocatalytic activity decreases accordingly, if the dealloying process lasts for 4 h. The findings not only demonstrate the importance of appropriate treatment of bimetallic catalysts, but also can be referred to other Pt bimetallic alloys with transition metals.  相似文献   

15.
新型三元铕配合物Eu(DBM)3L1(DBM=二苯甲酰甲烷,L1=2-(3-硝基苯基)-咪唑并[4,5-f]-1,10-邻二氮杂菲)的晶体属单斜晶系,Cc空间群.中心铕离子分别与DBM配体的六个氧原子和第二配体的两个鳌合氮原子配位,形成八配位的扭曲四方反棱柱构型.配合物中性配体的共轭平面与相邻分子的DBM苯环平面(C(25),C(26),C(27),C(28),C(29))之间有明显的π-π相互作用.在紫外光激发下,配合物表现出较强的Eu3+的特征发射,第二配体对中心离子有较强的敏化发光作用.  相似文献   

16.
17.
The compositions and photophysical properties of luminescent ternary complexes of thiacalix[4]arene‐p‐sulfonate (TCAS), TbIII, and AgI ions were determined. At pH 6, AgI2?TbIII2?TCAS2 formed. Moreover, at pH 10, in the presence of a 20‐fold excess of AgI and a 50‐fold excess of TCAS with respect to TbIII, AgI2?TbIII?TCAS2 formed as the main luminescent species. The structure of these complexes was proposed: two TCAS ligands are linked by two S–AgI–S linkages to adopt a double‐cone supramolecular structure. Furthermore, each TbIII ion in the former complex accepts O?, S, O? donation, whereas in the latter, the TbIII center accepts eightfold O? donation. The luminescence quantum yield (Φ) of AgI2?TbIII2?TCAS2 (0.16) was almost equal to that of TbIII?TCAS, but the luminescence lifetime τ of the former (=1.09 ms) was larger than that of the latter. For AgI2?TbIII?TCAS2, the yield Φ (=0.11) was small, which is attributed to the low efficiency of photosensitization (η=0.11). However, the τ value (4.61 ms) was exceptionally large and almost equal to the natural luminescence lifetime of TbIII (4.7 ms), which is due to the absence of coordinating water molecules (q=0.1). This is compatible with the proposed structure in which the TbIII ion is shielded by a supramolecular cage that expels coordinated water molecules responsible for luminescence quenching.  相似文献   

18.
IntroductionMononuclear ,dinuclearandpolymerictypesofcrys talstructuresforlanthanidecomplexeswithbenzoicacidanditsderivativeshavebeenobtainedbecauseofthevari ationofbridgingformsforcarboxylategroupandcoordina tionabilityofdiammineligands ,suchas 1,10 phena…  相似文献   

19.
本文研究了纳米银对稀土铕-吡啶-2,6-二羧酸配合物(Eu(Ⅲ)C7H5NO4,Eu(Ⅲ)DPA)的荧光性质的影响。随着纳米银浓度增加,荧光强度先增强而后逐渐下降。较大粒径的纳米银使Eu(Ⅲ)DPA荧光增强效率较大,且达到最大荧光增强效率所需的纳米银浓度较低。在高浓度Eu(Ⅲ)DPA溶液体系中,纳米银导致荧光猝灭。电偶极子跃迁发射荧光增强效率大于磁偶极子跃迁发射荧光增强效率。分析认为,纳米银对Eu(Ⅲ)DPA荧光性质的影响与表面等离子体共振与激发态荧光中心强烈耦合以及表面等离子体再吸收有关。同时,纳米银对铕配合物的不对称率有影响,其影响因素与局域电磁场增强,折射率以及配位场有关。  相似文献   

20.
王悦辉  王婷  周济 《无机化学学报》2014,30(5):1179-1186
研究了纳米银对稀土铕-吡啶-2,6-二羧酸配合物(Eu(Ⅲ)C7H5NO4,Eu(Ⅲ)DPA)的荧光性质的影响。随着纳米银浓度增加,荧光强度先增强而后逐渐下降。较大粒径的纳米银使Eu(Ⅲ)DPA荧光增强效率较大,且达到最大荧光增强效率所需的纳米银浓度较低。在高浓度Eu(Ⅲ)DPA溶液体系中,纳米银导致荧光猝灭。电偶极子跃迁发射荧光增强效率大于磁偶极子跃迁发射荧光增强效率。分析认为,纳米银对Eu(Ⅲ)DPA荧光性质的影响与表面等离子体共振与激发态荧光中心强烈耦合以及表面等离子体再吸收有关。同时,纳米银对铕配合物的不对称率有影响,其影响因素与局域电磁场增强,折射率以及配位场有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号