首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new composite electrode of multiwall carbon nanotubes (MWNTs) and 1-dodecyl-3-methylimidazolium hexafluorophosphate (DDMIMPF6) was fabricated to determine rutin. This electrode showed very attractive electrochemical performances compared to other kinds of ionic liquid modified electrodes and notably improved sensitivity and stability. Electrochemical behavior of rutin at the composite electrode had been investigated in pH 2.09 Britton–Robinson buffer solution by cyclic voltammetry and square wave voltammetry. The experimental results suggested that the composite electrode exhibited an electrocatalytic activity toward the redox of rutin. The electrochemical parameters of rutin were calculated with the results of the charge transfer coefficient (α) and the standard rate constant (k s) as 0.48 and 2.09 s?1. Under the selected conditions, the reduction peak current was linearly dependent on the concentration of rutin in the range of 0.03–1.5 μM, with a detection limit of 0.01 μM (S/N?=?3). The relative standard deviation for six times successive determination of 1 μM rutin was 1.6 %. The method was successfully applied to the determination of rutin in tablets and urine samples without the influence of the coexisting substances. In addition, the MWNTs/DDMIMPF6 composite electrode exhibits a distinct advantage of simple preparation, surface renewal, good reproducibility, and stability.  相似文献   

2.
We are presenting an electrochemical immunosensor for the determination of the β-agonist and food additive ractopamine. A glassy carbon electrode (GCE) was modified with gold nanoparticles and a film of a composite made from poly(arginine) and multi-walled carbon nanotubes. Antibody against ractopamine was immobilized on the surface of the modified GCE which then was blocked with bovine serum albumin. The assembly of the immunosensor was followed by electrochemical impedance spectroscopy. Results demonstrated that the semicircle diameter increases, indicating that the film formed on the surface hinders electron transfer due to formation of the antibody-antigen complex on the modified electrode. Under optimal conditions, the peak current obtained by differential pulse voltammetry decreases linearly with increasing ractopamine concentrations in the 0.1 nmol?L?1 to 1 μmol?L?1 concentration range. The lower detection limit is 0.1 nmol?L?1. The sensor displays good stability and reproducibility. The method was applied to the analysis of spiked swine feed samples and gave satisfactory results. Figure
Immunoassay for ractopamine based on glassy carbon electrode modified with gold nanoparticles and a film of a composite made from poly (arginine) and multi-walled carbon nanotubes was proposed. Under optimal conditions, the peak currents obtained by differential pulse voltammetry decreases linearly with increasing ractopamine concentrations in the 0.1 nmol?L?1 to 1 μmol?L?1 concentration range. The detection limit is 0.1 nmol?L?1.  相似文献   

3.
The electrochemical behavior of L-tyrosine was investigated at a multi-wall carbon nanotubes modified glassy carbon electrode. L-tyrosine itself showed a poor electrochemical response at the bare glassy carbon electrode; however, a multi-wall carbon nanotubes film fabricated on the glassy carbon electrode can directly enhance the electrochemical signal of L-tyrosine when applying cyclic voltammetry and square wave stripping voltammetry without any mediator. Cyclic voltammetry was carried out to study the electrochemical oxidation mechanism of L-tyrosine, which shows a totally irreversible process and an oxidation potential of 671 mV at the modified electrode and 728 mV at the bare electrode, ΔEp = 57 mV. The anodic peak current linearly increases with the square root of scan rate in the low range, suggesting that the oxidation of L-tyrosine on the multi-wall carbon nanotubes modified electrode is a diffusion-controlled process. The square wave stripping voltammetry currents of L-tyrosine at the multi-wall carbon nanotubes modified electrodes increased linearly with the concentration in the range of 2.0 × 10−6–5.0 × 10−4 mol L−1. The detection limit was 4.0 × 10−7 mol L−1. The method is simple, quick, sensitive and accurate.  相似文献   

4.
A new sensor was developed using a screen-printed carbon electrode modified with single-walled carbon nanotubes (SWCNTs) and Prussian blue (PB) coated with chitosan. The modified electrode allowed the oxidation and reduction of rutin at 0.25 and 0.096 V, respectively, with a ΔE of 0.154 V. Furthermore, the peak currents increase nearly 100% compared with the electrode without modification. The process was more reversible compared with the electrode modified with only SWCNTs or PB. Cyclic voltammetry was used to characterize the modified electrode surface. The quantification of rutin was more sensitive with adsorptive stripping voltammetry than with anodic stripping voltammetry. Adsorption potential, adsorption time and pH were optimized based on the oxidation of rutin: Eads =–0.10 V, tads = 60 s, pH 3.0. The detection limit (3σ/b) was 0.01 μM and the relative standard derivation was 3%. The new sensor was used in the quantification of rutin in black tea, coffee and synthetic drink of tea with satisfactory results.  相似文献   

5.
《Electroanalysis》2006,18(5):485-492
A novel method for the fabrication of carbon nanotubes/poly(1,2‐diaminobenzene) nanoporous composite based electrode was proposed. By multipulse potentiostatic electropolymerization, the multi‐walled carbon nanotubes (MWNTs) and poly(1,2‐diaminobenzene) were deposited simultaneously on the electrode surface. Compared with the composite prepared by the traditional potentiodynamic method, the composite synthesized by multipulse potentiostatic method has a unique nanoporous structure, exhibits excellent conductivity and better environmental stability. The surface of the resulting electrode was characterized with scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The nanoporous composite film modified glassy carbon electrode was also used successfully for the simultaneously voltammetric determination of trace level of Cd2+ and Cu2+ at first‐time. Under the optimal conditions, the determination limits of 0.25 and 0.33 ppb for Cd2+ and Cu2+ were obtained, respectively. The calibration graphs were linear in the concentration range of 5–100 ppb. The electrode system provides an excellent platform for ultra sensitive electrochemical sensors for chemical and biological sensing.  相似文献   

6.
In this article, an electrochemical sensor based on a gold nanocage (AuNC)‐modified carbon ionic liquid electrode (CILE) was fabricated and applied to the sensitive rutin determination. The presence of AuNCs on the electrode surface greatly improved the electrochemical performance of the working electrode due to its specific microstructure and high metal conductivity. Electrochemical behavior of rutin on AuNCs/CILE was studied using cyclic voltammetry and differential pulse voltammetry with the related electrochemical parameters calculated. Under the optimal experimental conditions, the oxidation peak current of rutin and its concentration had good linear relationship in the range from 4.0 × 10?9 to 7.0 × 10?4 mol/L with a low detection limit of 1.33 × 10?9 mol/L (3σ). This fabricated AuNCs/CILE was applied to direct detection of the rutin concentration in drug samples with satisfactory results, showing the real application of AuNCs in the field of chemically modified electrodes.  相似文献   

7.
A disposable electrochemical myeloperoxidase (MPO) immunosensor was fabricated based on the indium tin oxide electrode modified with a film composed of gold nanoparticles (AuNPs), poly(o-phenylenediamine), multi-walled carbon nanotubes and an ionic liquid. The composite film on the surface of the electrode was prepared by in situ electropolymerization using the ionic liquid as a supporting electrolyte. Negatively charged AuNPs were then adsorbed on the modified electrode via amine-gold affinity and to immobilize MPO antibody. Finally, bovine serum albumin was employed to block possible remaining active sites on the AuNPs. The modification of the electrode was studied by cyclic voltammetry and scanning electron microscopy. The factors affecting the performance of the immunosensor were investigated in detail using the hexacyanoferrate redox system. The sensor exhibited good response to MPO over two linear ranges (from 0.2 to 23.4 and from 23.4 to 300 ng.mL?1), with a detection limit of 0.05 ng.mL?1 (at an S/N of 3).
Figure
A disposable electrochemical immunosensor for myeloperoxidase based on the indium tin oxide electrode modified with an ionic liquid composite film composed of gold nanoparticles, poly(o-phenylenediamine) and carbon nanotubes.  相似文献   

8.
Zhou  Ying  Wang  Peilong  Su  Xiaoou  Zhao  Hong  He  Yujian 《Mikrochimica acta》2014,181(15):1973-1979

We are presenting an electrochemical immunosensor for the determination of the β-agonist and food additive ractopamine. A glassy carbon electrode (GCE) was modified with gold nanoparticles and a film of a composite made from poly(arginine) and multi-walled carbon nanotubes. Antibody against ractopamine was immobilized on the surface of the modified GCE which then was blocked with bovine serum albumin. The assembly of the immunosensor was followed by electrochemical impedance spectroscopy. Results demonstrated that the semicircle diameter increases, indicating that the film formed on the surface hinders electron transfer due to formation of the antibody-antigen complex on the modified electrode. Under optimal conditions, the peak current obtained by differential pulse voltammetry decreases linearly with increasing ractopamine concentrations in the 0.1 nmol•L−1 to 1 μmol•L−1 concentration range. The lower detection limit is 0.1 nmol•L−1. The sensor displays good stability and reproducibility. The method was applied to the analysis of spiked swine feed samples and gave satisfactory results.

Immunoassay for ractopamine based on glassy carbon electrode modified with gold nanoparticles and a film of a composite made from poly (arginine) and multi-walled carbon nanotubes was proposed. Under optimal conditions, the peak currents obtained by differential pulse voltammetry decreases linearly with increasing ractopamine concentrations in the 0.1 nmol•L−1 to 1 μmol•L−1 concentration range. The detection limit is 0.1 nmol•L−1.

  相似文献   

9.
徐琴  刘妮娜  朱俊杰 《中国化学》2005,23(11):1510-1514
A composite material of nitric acid oxidized multiwalled carbon nanotube (MWNT) and Nation was prepared. Such composite was modified on a glassy carbon electrode to determine trace of lead by differential pulsed voltammetry. In pH=6.47 NaNO3 solution, Pb^2+ ions were accumulated on the modified electrode at -0.4 V. Compared with a bare and a Nation film coated electrode, the composite coated GC electrode can reduce the accumulating potential and eliminate the toxic character of mercury. The calibration plots were linear at low concentration of 5.0× 10^-9-2.0× 10^-8 mol/L and high concentration of 2.5× 10^-8-5.0× 10^-6 mol/L. The performances characteristics indicate that the electrode can be used to determine trace Pb^2+ ions.  相似文献   

10.
By immobilizing rutin at the surface of a glassy carbon electrode (GCE) modified with multi-wall carbon nanotubes (MWCNT), a new modified electrode has been fabricated and its electrochemical behavior was investigated by cyclic voltammetry. Cyclic voltammograms of the resulting modified electrode show stable and a well defined redox couple with surface confined characteristics. The results show that the reversibility of rutin is significantly improved at a MWCNT modified GCE in comparison with GCE alone. The charge transfer coefficient, α, was calculated to be 0.4, and charge transfer rate constant, ks, was 46.7 s−1 in pH 8, indicating great facilitation of the electron transfer between rutin and MWCNT deposited on the electrode surface. The rutin MWCNT (RMWCNT) modified GCE showed excellent mediation of hydrazine oxidation: a decrease in the overvoltage of hydrazine electrooxidation was observed as well as a dramatic increase in the peak current compared to that seen at a rutin modified GCE (RMGCE), activated GCE or bare GCE. Hydrazine was determined amperometrically at the surface of RMWCNT modified GCE in pH 8. Under the optimized conditions the calibration curve is linear in the concentration range 2.0–190.0 μM hydrazine. The detection limit and sensitivity are 0.61 μM and 0.0656 μA μM−1, respectively. Finally the kinetic parameters of the electron transfer coefficient, α, the heterogeneous rate constant of dependent to different potentials, k′(E), and the standard heterogeneous rate constant, k0, for oxidation of hydrazine at the RMWCNT surface were determined using various electrochemical methods. The advantages of this modified electrode for hydrazine determination are high sensitivity, excellent catalytic activity, short response time, wide linear range, and high exchange current density.  相似文献   

11.
《Analytical letters》2012,45(6):881-897
Abstract

The preparation and electrochemical characterization of a carbon composite electrode modified with copper(II)-resin as well as its behavior toward rutin were investigated using cyclic and linear sweep voltammetry. The best voltammetric response was observed for a composite composition of 20% (m/m) copper(II)-resin, 0.10 mol L?1 KNO3/10?6 mol L?1 HNO3 solution (pH 6.0) as the supporting electrolyte, and a scan rate of 50 mVs?1. A linear voltammetric response for rutin was obtained in the concentration range from 9.90 × 10?7 to 8.07 × 10?6 mol L?1, with a detection limit of 2.65 × 10?8 mol L?1. The proposed electrode was useful for the quality control and routine analysis of rutin in pharmaceutical formulations.  相似文献   

12.
The preparation and characterisation of a new composite electrode with Co3O4 particles-modified multi-walled carbon nanotube (MWCNT) and poly(phenosafranine), as well as its novel application for the voltammetric detection of rutin was described. The resulting composite electrode was characterised using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). In the optimised experimental conditions, the oxidation peak current (Ipa) of rutin showed a linear increase in concentration, between 0.008–0.6 and 0.80–6.0 μmol L−1, with a detection limit of 0.00379 μmol L−1. Due to its good selectivity and stability, the composite electrode was successfully applied in detecting rutin in pharmaceutical formulations.  相似文献   

13.
A robust and effective composite film combined the benefits of Nafion, room temperature ionic liquid (RTIL) and multi‐wall carbon nanotubes (MWNTs) was prepared. Hemoglobin (Hb) was successfully immobilized on glassy carbon electrode surface by entrapping in the composite film. Direct electrochemistry and electrocatalysis of immobilized Hb were investigated in detail. A pair of well‐defined and quasi‐reversible redox peaks of Hb was obtained in 0.10 mol·L?1 pH 7.0 phosphate buffer solution (PBS), indicating that the Nafion‐RTIL‐MWNTs film showed an obvious promotion for the direct electron transfer between Hb and the underlying electrode. The immobilized Hb exhibited an excellent electrocatalytic activity towards the reduction of H2O2. The catalysis current was linear to H2O2 concentration in the range of 2.0×10?6 to 2.5×10?4 mol·L?1, with a detection limit of 8.0×10?7 mol·L?1 (S/N=3). The apparent Michaelis‐Menten constant (Kmapp) was calculated to be 0.34 mmol·L?1. Moreover, the modified electrode displayed a good stability and reproducibility. Based on the composite film, a third‐generation reagentless biosensor could be constructed for the determination of H2O2.  相似文献   

14.
Graphene nanosheets modified glassy carbon electrode (GNs/GCE) was fabricated as voltammetric sensor for rutin with good sensitivity, selectivity and reproducibility. The sensor exhibits an adsorption‐controlled, reversible two‐proton and two electron transfer reaction for the oxidation of rutin with a peak‐to‐peak separation (ΔEp) of 26 mV as revealed by cyclic voltammetry. Moreover, the redox peak current increased about 14 times than that on bare glassy carbon electrode (GCE). The linear response of the sensor is from 1×10?7 to 1×10?5 M with a detection limit of 2.1 × 10?8 M (S/N = 3). The method was successfully applied to determine rutin in tablets with satisfied recovery.  相似文献   

15.
We report on a carbon ionic liquid electrode modified with a composite made from Nafion, graphene oxide and ionic liquid, and its application to the sensitive determination of rutin. The modified electrode was characterized by cyclic voltammetry and electrochemical impedance spectroscopy. It shows excellent cyclic voltammetric and differential pulse voltammetric performance due to the presence of nanoscale graphene oxide and the ionic liquid, and their interaction. A pair of well-defined redox peaks of rutin appears at pH 3.0, and the reduction peak current is linearly related to its concentration in the range from 0.08 μM to 0.1 mM with a detection limit of 0.016 μM (at 3σ). The modified electrode displays excellent selectivity and good stability, and was successfully applied to the determination of rutin in tablets with good recovery.
Figure
A Nafion, graphene oxide and ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate composite was modified on carbon ionic liquid electrode (CILE) for the sensitive detection of rutin.  相似文献   

16.
A new composite electrode has been fabricated based on coating multi‐walled carbon nanotubes (MWCNTs) and n‐octylpyridinum hexafluorophosphate (OPPF6) ionic liquid composite on a glassy carbon (GC) electrode (OPPF6‐MWCNTs/GCE). This electrode shows very attractive electrochemical performances for electrooxidation of risperidone (RIS) compared to conventional electrodes using carbon and mineral oil, notably improved sensitivity and stability. The oxidation peak potentials in cyclic voltammogram of RIS on the OPPF6‐MWCNTs/GCE was occurred around 230 mV vs. SCE at Britton–Robinson (B–R) buffer (pH 4.0) at scan rate of 100 mV s?1. The electrochemical parameters such as diffusion coefficient (D), charge transfer coefficient (α) and the electron transfer rate constant (k/s) were determined using cyclic voltammetry. Under the optimized conditions, the peak current was linear to risperidone concentration over the concentration range of 10–200 nM with sensitivity of 0.016 μA/nM?1 using differential pulse voltammetry. The detection limit was 6.54 nM (S/N = 3). The electrode also displayed good selectivity and repeatability. In the presence of clozapine (CLZ) the response of RIS kept almost unchanged. Thus this electrode could find application in the determination of RIS in some real samples. The analytical performance of the OPPF6‐MWCNTs/GCE was demonstrated for the determination of RIS in human serum and pharmaceutical samples.  相似文献   

17.
通过电沉积的方式在多壁碳纳米管(MWCNTs)修饰玻碳电极表面上沉积铂(pt)纳米粒子,并运用循环伏安法(CV)、示差脉冲伏安法(DPV)探讨了芦丁在铂纳米/碳纳米管/玻碳电极上的电化学行为.实验结果表明,芦丁在该修饰电极上呈现一对良好氧化还原峰,其氧化峰电流与浓度在3.2×10(-8)~1.2×10(-5)mol/L...  相似文献   

18.
Designing an electrochemical sensor for versatile clinical applications is a sophisticated task and how dedicatedly functionalized composite materials can perform on this stage is a challenge for today and tomorrow's Nanoscience and Nanotechnology. In the present work, we demonstrate a new strategy for the development of novel electrochemical sensor based on catalytic nanocomposite film. Fullerene-C60 and multi-walled carbon nanotubes (MWCNTs) were dropped on the pre-treated carbon paste electrode (CPE) and copper nanoparticles (CuNPs) electrochemically deposited on the modified CPE to form nanocomposite film of CuNPs/C60/MWCNTs/CPE. In this work, an electrochemical method based on square wave voltammetry (SWV) employing CuNPs/C60/MWCNTs/CPE has been presented for the recognition and determination of paracetamol (PT). Developed electrochemical sensor was characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronocoulometry. The composite film made the fabricated sensor to display high sensitivity and good selectivity for PT detection. The influence of the optimization parameters such as pH, accumulation time, deposition potential, scan rate and effect of loading of composite mixture of C60-MWCNTs and CuNPs on the electrochemical performance of the sensor were evaluated. A linear range from 4.0 × 10−9 to 4.0 × 10−7 M for PT detection was obtained with a detection limit of 7.3 × 10−11 M. The fabricated sensor was successfully applied to the detection of PT in biological samples with good recovery ranging from 99.21 to 103%.  相似文献   

19.
A glassy carbon electrode modified with per‐6‐amino‐β‐cyclodextrin (β‐CDNH2) and functionalized single‐walled carbon nanotubes (SWCNT‐COOH) was elaborated. This structure was investigated for the detection of dopamine acid (DA) in presence of ascorbic acid (AA). The sensor behavior was studied by cyclic voltammetry, square wave voltammetry and electrochemical impedance spectroscopy. The analysis results show that the electrode modification with CD derivative improves the sensitivity and selectivity of the DA recognition; the electrochemical response was further improved by introduction of SWCNT‐COOH. The sensor shows good and reversible linear response toward DA within the concentration range of 7×10?7–10?4 M with a detection limit of 5×10?7 M.  相似文献   

20.
The catalytic activities of oxo and hydroxo forms of nickel(II) on the surface of a nickel deposit and an inorganic film of nickel(II) hexacyanoferrate(III) (NiHCF) electrodeposited on a glassy-carbon electrode both unmodified and modified by multi-wall or single-wall (also functionalized) carbon nanotubes in the electrooxidation of glucose, sucrose, and maltose are compared. A more pronounced catalytic effect was obtained in the electrooxidation of these carbohydrates on an electrode modified with functionalized singlewall carbon nanotubes and a NiHCF film. Methods are proposed for the voltammetric and flow-injection determination of carbohydrates on this composite electrode. A linear dependence of the analytical signal on the analyte concentration was observed in the range from 5 × 10?7 to 5 × 10?2 M under stationary conditions and from 0.003 to 0.3 μmol under flow conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号