首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In order to investigate the pharmacokinetics of tropane alkaloids in Hyoscyamus niger L., a sensitive and specific high‐performance liquid chromatography with tandem mass spectrometry method for the simultaneous determination of atropine, scopolamine, and anisodamine in rat plasma is developed and fully validated, using homatropine as an internal standard. The separation of the four compounds was carried out on a BDS Hypersil? C18 column using a mobile phase consisting of acetonitrile and water (containing 10 mmol ammonium acetate). Calibration curves were linear from 0.2 to 40 ng/mL for atropine, scopolamine, and from 0.08 to 20 ng/mL for anisodamine. The precision of three analytes was <5.89% and the accuracy was between ?1.04 to 2.94%. This method is successfully applied to rat pharmacokinetics analysis of the three tropane alkaloids after oral administration of H. niger extract. The maximum concentration of these three tropane alkaloids was reached within 15 min, and the maximum concentrations were 31.36 ± 7.35 ng/mL for atropine, 49.94 ± 2.67 ng/mL for scopolamine, and 2.83 ± 1.49 ng/mL for anisodamine. The pharmacokinetic parameters revealed areas under the curve of 22.76 ± 5.80, 16.80 ± 3.08, and 4.31 ± 1.21 ng/h mL and mean residence times of 2.08 ± 0.55, 1.19 ± 0.45, and 3.28 ± 0.78 h for atropine, scopolamine, and anisodamine, respectively.  相似文献   

2.
A rapid and simple method was demonstrated for the analysis of atropine, anisodamine, and scopolamine by nonaqueous capillary electrophoresis (NACE) coupled with electrochemiluminescence (ECL) and electrochemistry (EC) dual detection. The mixture of acetonitrile (ACN) and 2-propanol containing 1 M acetic acid (HAc), 20 mM sodium acetate (NaAc), and 2.5 mM tetrabutylammonium perchlorate (TBAP) was used as the electrophoretic buffer. Although a short capillary of 18 cm was used, the decoupler was not needed and the separation efficiency was good. The linear ranges of atropine, anisodamine, and scopolamine were 0.5–50, 5–2000, and 50–2000 μM, respectively. For six replicate measurements of 100 μM scopolamine, 15 μM atropine, and 200 μM anisodamine, the RSDs of ECL intensity, EC current, and migration time were less than 3.6%, 4.5%, and 0.3%, respectively. In addition, because the organic buffer was used, the working electrode (Pt) was not easily fouled and did not need reactivation. The method was also applied for the determination of these three alkaloids in Flos daturae extract.  相似文献   

3.
《Analytical letters》2012,45(1):18-28
A simple and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the simultaneous analysis of three tropane alkaloids in blood and urine. After 1 mL of a blood or urine sample was extracted using a liquid–liquid extraction method with ethyl acetate at pH 8 and homatropine as the internal standard, the tropane alkaloids were separated. An Allure PFP propyl column (50 mm × 2.1 mm, 5 µm) separated the tropane alkaloids using an acetonitrile-buffer solution (20 mmol/L ammonium acetate and 0.1% formic acid, pH 4) (70:30) as the mobile phase at a flow-rate of 0.2 mL/min in isocratic mode, with the LC-MS/MS in the positive ionization mode. For each compound, detection was related to two daughter ions (scopolamine: m/z 304.4 → 138.1 and 155.9; atropine: m/z 290.3 → 124.0 and 93.1; anisodamine: m/z 306.3 → 140.1 and 91.1; and homatropine: m/z 276.3 → 124.3 and 142.1). The tropane alkaloids exhibited excellent linearity in the range of 0.05–100 ng/mL in blood and 0.2–100 ng/mL in urine, with a limit of detection range from 0.02 to 0.05 ng/mL for biological materials. The extraction recoveries of atropine, scopolamine, and anisodamine were more than 53% in the blood and urine; the interday and intraday RSDs were less than 10%; the within-day and between-day accuracy were between ?9.8% and +8.8%. The present method is simple and rapid, as shown by its application to a clinical case. This method is useful for routine analysis of tropane alkaloids in cases of suspected tropane alkaloid poisoning.  相似文献   

4.
A novel CE method was developed for the separation and determination of three main tropane alkaloids in Flos daturae with a capillary coated by graphene oxide (GO). The GO‐coated capillary was characterized by SEM, energy dispersive X‐ray spectroscopy, and Raman spectroscopy, and the results indicated that the inner surface of the capillary was partially coated by GO. A phosphate solution (40 mM, pH7.0) containing 20% v/v methanol and 30% v/v acetonitrile was used as the running buffer for the analysis of the atropine, scopolamine, and anisodamine. The linear ranges of atropine, scopolamine, and anisodamine was 0.5–200 μg/mL with satisfactory correlation coefficients (R2) > 0.9987, and this novel method provided an efficient separation for three tropane alkaloids as well as a good reproducibility and stability. Finally, the method was successfully applied for the determination of these three tropane alkaloids in plant extracts.  相似文献   

5.
任小娜  马永钧  周敏  霍淑慧  姚俊丽  陈慧 《色谱》2008,26(2):223-227
以铕离子掺杂类普鲁士蓝(Eu-PB)化学修饰铂电极为工作电极,采用毛细管电泳-电致化学发光检测法对4种托烷类生物碱成分(如山莨菪碱、东莨菪碱、阿托品和樟柳碱)进行了分离检测。考察了氧化电位值、运行缓冲液酸度、盐浓度和甲醇含量等实验条件对电泳分离效果及检测灵敏度的影响。在优化的实验条件下,以20 mmol/L的磷酸盐(pH 8.0)-7%(体积分数)甲醇为运行液,各组分在6 min内可达到基线分离,其峰面积的相对标准偏差小于5.0%,迁移时间的相对标准偏差小于1.1% (n=12)。并将该法成功地应用于测定中药马尿泡根茎中的山莨菪碱和东莨菪碱的含量,其含量平均值分别为27.8 g/kg和4.43 g/kg。样品的加标回收率为97.8%~102%。  相似文献   

6.
A modified quick, easy, cheap, effective, rugged and safe method was established for simultaneous determination of atropine, anisodamine, and scopolamine in goji berries by using ultra‐high‐performance liquid chromatography with tandem mass spectrometry. The graphene/hexagonal boron nitride hybrids were prepared and first applied as a cleanup adsorbent. Compared to classical cleanup adsorbent (C18), the graphene/hexagonal boron nitride hybrids as adsorbent had better extraction efficiency for the detection of analytes. Under the optimal conditions, the proposed analytical method achieved satisfactory linearity (R> 0.995), and obtained desirable recoveries ranged from 77.4 to 94.0% with the relative standard deviation of 1.2–6.1% at the concentration levels of 3.2–13.4 µg/kg. The limits of quantitation of atropine, anisodamine, and scopolamine were, respectively, 3.2, 4.6, and 4.5 µg/kg with linearity ranged from 3.2 to 25.4 µg/kg. The modified quick, easy, cheap, effective, rugged, and safe sample preparation with ultra‐high‐performance liquid chromatography and tandem mass spectrometry method was successfully applied to evaluate the safety of goji berries collected from 30 plant areas in China, suggesting its applicability and suitability for the routine analysis of three tropane alkaloids in goji berries.  相似文献   

7.
A novel capillary zone electrophoresis separation coupled to electro spray ionization time‐of‐flight mass spectrometry method was developed for the simultaneous analysis of six toxic alkaloids: brucine, strychnine, atropine sulfate, anisodamine hydrobromide, scopolamine hydrobromide and anisodine hydrobromide in human plasma and urine. To obtain optimal sensitivity, a solid‐phase extraction method using Oasis MCX cartridges (1 mL, 30 mg; Waters, USA) for the pretreatment of samples was used. All compounds were separated by capillary zone electrophoresis at 25 kV within 12 min in an uncoated fused‐silica capillary of 75 μm id × 100 cm and were detected by time‐of‐flight mass spectrometry. This method was validated with regard to precision, accuracy, sensitivity, linear range, limit of detection (LOD), and limit of quantification (LOQ). In the plasma and urine samples, the linear calibration curves were obtained over the range of 0.50–100 ng/mL. The LOD and LOQ were 0.2–0.5 ng/mL and 0.5–1.0 ng/mL, respectively. The intra‐ and interday precision was better than 12% and 13%, respectively. Electrophoretic peaks could be identified by mass analysis.  相似文献   

8.
A capillary electrophoresis method was developed for the separation and determination of tropane alkaloids in Flos daturae plants. Separation was performed on a fused silica capillary(42.1 cm x 50 microm i.d.) at an applied voltage of 20 kV. Scopolamine, atropine and anisodamine were well separated in the buffer of 50 mmol/L phosphate buffer (pH 5.0) containing 20% (v/v) tetrahydrofuran (THF). Beer's law was obeyed in the range of concentration of 2.4-21.8 microg/mL for scopolamine, 4.0-36.0 microg/mL for atropine and 2.6-23.7 microg/mL for anisodamine, respectively, and the correlation coefficients were over 0.999 (n = 6). The developed method was applied for the analysis of herb samples.  相似文献   

9.
A simple, rapid, high‐throughput, and highly sensitive LC–MS/MS was developed to determine anisodamine in a small volume (50 μL) of beagle dog plasma using atropine sulfate as the internal standard. The analyte and internal standard were isolated from 50 μL plasma samples after a one‐step protein precipitation using Sirocco 96‐well protein precipitation filtration plates. The separation was accomplished on a Hanbon Hedera CN column (100 × 4.6 mm, 5 μm) and the run time was 4 min. A Micromass Quatro Ultima mass spectrometer equipped with an ESI source was operated in the multiple reaction monitoring mode with the precursor‐to‐product ion transitions m/z 306.0→140.0 (anisodamine) and 290.0→123.9 (atropine) used for quantitation. The method was sensitive with a low LOQ of 0.05 ng/mL, and good linearity in the range 0.05–50 ng/mL for anisodamine (r2 ≥ 0.995). All the validation data, such as accuracy, intra‐ and interrun precision, were within the required limits. The method was successfully applied to the pharmacokinetic study of anisodamine hydrochloride injection in beagle dogs.  相似文献   

10.
We employed CE to identify mixtures of the toxic alkaloids lappaconitine, bullatine A, atropine sulfate, atropine methobromide, scopolamine hydrobromide, anisodamine hydrobromide, brucine, strychnine, quinine sulfate, and chloroquine in human blood and urine, using procaine hydrochloride as an internal standard. The separation employed a fused-silica capillary of 75 microm id x 60 cm length (effective length: 50.2 cm) and a buffer containing 100 mM phosphate and 5% ACN (pH 4.0). The sample was injected in a pressure mode and the separation was performed at a voltage of 16 kV and a temperature of 25 degrees C. The compounds were detected by UV absorbance at wavelengths of 195 and 235 nm. All the ten alkaloids were separated within 16 min. The method was validated with regard to precision (RSD), accuracy, sensitivity, linear range, LOD, and LOQ. In blood and urine samples, the detection limits were 5-40 ng/mL and linear calibration curves were obtained over the range of 0.02-10 microg/mL. The precision of intra- and interday measurements was less than 15%. Electrophoretic peaks could be identified either by the relative migration time or by their UV spectrum.  相似文献   

11.
The coupling of Ru(bpy)32+ based electrochemiluminescence (ECL) detection with capillary electrophoresis (CE) was developed for the simultaneous determination of the two major active ingredients (atropine and scopolamine) in Flos daturae. Parameters related to the separation and detection were discussed and optimized. It was proved that 20 mM phosphate buffer at pH 8.48 could achieve the most favorable resolution, and the high sensitivity of detection was obtained by maintaining the detection potential at 1.2 V. Under the optimized conditions: ECL detection at 1.2 V, 20 mM phosphate buffer at pH 8.48, 5 mM Ru(bpy)32+ and 50 mM phosphate buffer at pH 7.48 in the detection reservoir, detection limits of 5 × 10−8 mol/l for atropine and 1 × 10−6 mol/l for scopolamine were obtained. Relative standard derivations of the ECL intensity and the migration time were 5.16 and 0.71% for atropine and 5.07 and 1.22% for scopolamine, respectively. Developed method was successfully applied to determine the amounts of both alkaloids in Flos daturae. A baseline separation for atropine and scopolamine was achieved within 11 min.  相似文献   

12.
A fast method for the determination of tropane alkaloids, using a portable CE instrument with a capacitively coupled contactless conductivity detector (CE-C4D) was developed and validated for determination of atropine and scopolamine in seeds from Solanaceae family plants. Separation was obtained within 5 min, using an optimized background electrolyte consisting of 0.5 M acetic acid with 0.25% (w/v) β-CD. The limit of detection and quantification was 0.5 µg/mL and 1.5 µg/mL, respectively, for both atropine and scopolamine. The developed method was validated with the following parameters—precision (CV): 1.07–2.08%, accuracy of the assay (recovery, RE): 101.0–102.7% and matrix effect (ME): 92.99–94.23%. Moreover, the optimized CE-C4D method was applied to the analysis of plant extracts and pharmaceuticals, proving its applicability and accuracy.  相似文献   

13.
Three methods of atropine and scopolamine determination in transdermal permeation have been developed. Radiometric determination seems to be an excellent, quick and extremely sensitive method, which ought to be preferred when working with biological systems. The radioreceptor analysis is of group specificity. It can be used to advantage in monitoring atropine plasma concentrations exceeding 1.5 ng cm–3 and scopolamine concentrations above 50 pg cm–3. GC/MS provides adequate specificity and sensitivity for the determination of therapeutic levels of atropine and scopolamine in blood. The sensitivity of this method is approximately 1–2 ng cm–3.  相似文献   

14.
利用协同液相微萃取方法初步探讨氢溴酸山莨菪碱、硫酸阿托品、氢溴酸东莨菪碱和丁溴酸东莨菪碱的优势构象;阐明有机溶剂对4种莨菪碱的萃取选择性和协同萃取作用机理;探讨中空纤维与莨菪碱形成电荷转移超分子对萃取效果的影响以及4种莨菪碱结构中N原子的亲电能力;结合高效液相色谱技术测定药物制剂中4种莨菪碱的含量。4种莨菪碱的线性范围均为0.05~5mg/L(r0.99),方法RSD小于7%,消旋山莨菪碱片和颠茄片中平均回收率分别为95.0%~119.0%和93.0%~95.0%,氢溴酸山莨菪碱和丁溴酸东莨菪碱检出限为0.03mg/L,硫酸阿托品和氢溴酸东莨菪碱检测出限为0.01mg/L。  相似文献   

15.
N‐Ethylpentylone (NEP) is a popular synthetic cathinone abused worldwide. To obtain more information about its pharmacokinetics and pharmacodynamics, a rapid, simple and sensitive liquid chromatography–tandem mass spectrometry method was developed for the determination of NEP, two important neurotransmitters, dopamine and serotonin, and their metabolites, including 3,4‐dihydroxyphenylacetic acid, 3‐methoxytyramine and 5‐hydroxyindole‐3‐acetic acid, in rat brain microdialysate. The analytes were separated on a Phnomenex Polar C18 column, with a mobile phase of 0.1% formic acid in water (A) and 0.1% formic acid in acetonitrile (B) under gradient elution to shorten the total chromatographic run time. A triple quadruple mass spectrometer coupled with an electrospray ionization source in both positive and negative ion mode was used to detect the analytes. This method showed excellent accuracy (87.4–113.5%) and precision (relative standard deviation <15%) at three quality control levels. The limits of detection were 0.2 ng/mL for NEP and 0.2–50 nm for the others and good linearity was obtained. This study pioneered a method to integrate exogenous drugs and endogenous neurotransmitters as the drugs act on the same determination system, which means that this innovation can provide support for further study of the addictive effects of NEP or other synthetic cathinones on extracellular levels of dopamine and 5‐hydroxytryptamine.  相似文献   

16.
示波极谱滴定法测定生物碱氢溴酸盐类药物   总被引:6,自引:0,他引:6  
以AgNO3作滴定剂,KNO3和磺基水杨酸为极谱底液,采用交流示波极谱滴定法测定氢溴酸山莨菪碱、氢溴酸东莨菪碱、氢溴酸加兰他敏三种生物碱氢溴酸盐类药物的含量。该法到目前为止未见报道,具有快速、准确、终点直观的特点。  相似文献   

17.
The present study aimed at determining selected alkaloid components in the nectar of Datura species, to elucidate whether the alkaloid content of the floral nectar can lead to intoxication. A simple and rapid liquid chromatography coupled with electrospray mass spectrometry analysis was developed for the quantitative determination of atropine and scopolamine, the main toxic alkaloids of the Datura species. This method allowed the direct coupling of an electrospray mass selective detector to the LC system. Under these conditions, atropine and scopolamine were well separated from other components and detected with mass spectrometry (mass selective detector). Simultaneous determination of atropine and scopolamine was performed with gradient elution on an Ascentis Express C18 (Supelco) reversed-phase column based on a new fused core particle design. Liquid chromatography coupled with electrospray mass spectrometry was used in positive ion mode. Atropine and scopolamine produced protonated species at m/z 290 and 304 (which are also the base peaks). Our data confirmed that the alkaloid characteristics for the vegetative and reproductive parts of the Datura plants may also occur in the nectar secreted by the flowers. In Datura species with large flowers and high nectar amounts, the alkaloid content increases proportionately and thus the nectar may be a potential source of intoxication.  相似文献   

18.
In this work, a novel method based on the microwave-assisted extraction (MAE), the QuEChERS dispersive solid-phase extraction and gas chromatography–mass spectrometry was developed for the determination of atropine and scopolamine in plant samples from Datura and Brugmansia genera, which belong to the Solanaceae family. The experimental conditions for MAE, such as temperature, time of extraction, and volume of the extracting solvent as well as extract purification procedure parameters were optimized by the Doehlert uniform shell design and the response surface methodology. For quantitative analysis and validation, a standard addition calibration method was used to reduce the matrix effect. The limits of detection from 3.0 to 3.4 µg g?1 of dry matter and the linearity of the calibration dependence were suitable for the analysis of plant extracts. The repeatability and intermediate precision for both analytes were found to be acceptable (<15%). The developed method was successfully applied to the samples of leaves and seeds of Datura and Brugmansia.  相似文献   

19.
A differential pulse voltammetric (DPV) method was developed for the determination of 4‐nitrophenol (4‐NP) at a newly developed silver amalgam paste electrode (AgA‐PE) in Britton–Robinson buffer pH 3.0. The electrode is based on a disposable plastic pipette tip filled with paste amalgam based on a mixture of mercury and fine silver powder (9 : 1, w/w). The experimental parameters, such as pH of Britton–Robinson buffer and activation and regeneration potential of the electrode surface were optimized. The reduction peak current dependences were linear for the concentration of 4‐NP from 0.2 to 100 μM. The method showed reproducible results with RSD (n=45) of 1.7%. The limit of determination (LOD) was 0.3 μM. The method was successfully applied for the direct determination of 4‐NP in drinking water.  相似文献   

20.
This study aimed to develop a rapid, specific and sensitive method for the residue determination of benzo‐1,2,3‐thiadiazole‐7‐carboxylic acid 2‐benzoyloxyethyl ester in soil, vegetable, and water by using gas chromatography with tandem mass spectrometry. During the extraction procedure, modified quick, easy, cheap, effective, rugged, and safe method using acetonitrile was compared with classical oscillating extraction using ethyl acetate and acetone, respectively. Before injection, a solid‐phase extraction cartridge of Bond Elut Florisil was used for sample clean‐up. The method was fully validated and showed satisfactory linearity (r2 > 0.99) over the range to be assayed (10–1000 ng/mL), with the limits of detection ranging from 0.092–0.229 ng/mL and the limits of quantification ranging from 0.307–0.763 ng/mL. Recovery values at the spiked concentrations of 10, 100 and 1000 ng/g varied from 85.9–109.3%, 81.0–108.2%, 74.2–113.4% for water, soil and vegetable, respectively, with the maximum relative standard deviations of 12.2%. Results indicated that the established modified quick, easy, cheap, effective, rugged, and safe method coupled to gas chromatography with tandem mass spectrometry was promising for the residue monitoring of benzo‐1,2,3‐thiadiazole‐7‐carboxylic acid 2‐benzoyloxyethyl ester in the environment and vegetable products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号