首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a prototype air‐breathing carbon cloth‐based electrode that was fabricated starting from a commercially available screen‐printed electrode equipped with a transparent ITO working electrode (DropSens, ref. ITO10). The fabrication of the air‐breathing electrodes is straightforward, shows satisfactory reproducibility and a good electrochemical response as evaluated by means of [Fe(CN)6]3?/4? voltammetry. The gas‐diffusion electrodes were successfully modified with the O2 reducing enzyme bilirubin oxidase from Myrothecium verrucaria in a direct electron transfer regime. The enzyme modified electrodes showed a remarkable high current density for O2 reduction in passive air‐breathing mode of up to 5 mA cm?2. Moreover, the enzyme modified electrodes were applied as O2 reducing biocathodes in a glucose/air enzymatic biofuel cell in combination with a high current density glucose oxidase/redox polymer bioanode. The biofuel cell provides a high maximum power density of (0.34±0.02) mW cm?2 at 0.25 V. The straightforward design, low cost and the high reproducibility of these electrodes are considered as basis for standardized measurements under gas‐breathing conditions and for high throughput screening of gas converting (bio‐)catalysts.  相似文献   

2.
本文采用溶胶凝聚方法制备了超细氢氧化亚镍电极材料并通过在其中掺加适量碳纳米管的方法大大提高了电极的比容量并有效改善了电极材料的阻抗特性。掺有20%碳纳米管的氢氧化亚镍复合电极材料的单电极比容量可达到320 F·g-1。本文分别采用氢氧化亚镍/碳纳米管复合电极作为正极,活性炭作为负极,6 mol·L-1 KOH作为电解液制备了复合型电化学电容器。采用上述方法制备的复合型电容器工作电压达到1.6 V,电容器质量比容量达到60 F·g-1。复合型电容器能量密度达到20.11 Wh·kg-1,最大功率密度达到8.6 kW·kg-1,兼具高能量特性和优良的大电流放电特性。  相似文献   

3.
《Electroanalysis》2004,16(19):1561-1568
A new methodology, based on silver electrocatalytic deposition and designed to quantify gold deposited onto carbon paste electrode (CPE) and glassy carbon electrode (GCE), has been developed in this work. Silver (prepared in 1.0 M NH3) electrodeposition at ?0.13 V occurs only when gold is previously deposited at an adequate potential on the electrode surface for a fixed period of time. When a CPE is used as working electrode, an adequate oxidation of gold is necessary. This oxidation is carried out in both 0.1 M NaOH and 0.1 M H2SO4 at oxidation potentials. When a GCE is used as working electrode, the oxidation steps are not necessary. Moreover, a cleaning step in KCN, which removes gold from electrode surface, is included. To obtain reproducibility in the analytical signal, the surface of the electrodes must be suitably pretreated; this electrodic pretreatment depends on the kind of electrode used as working electrode. Low detection limits (5.0×10?10 M) for short gold deposition times (10 min for CPE and 5 min for GCE) were achieved with this novel methodology. Finally, sodium aurothiomalate can be quantified using silver electrocatalytic deposition and GCE as working electrode. Good linear relationship between silver anodic stripping peak and aurothiomalate concentration was found from 5.0×10?10 M to 1.0×10?8 M.  相似文献   

4.
《Electroanalysis》2017,29(10):2332-2339
A portable sensor based on a microband design for arsenic detection in drinking water is presented. The work was focused to minimize interference encountered with a standard screen‐printed electrodes featuring an onboard gold working electrode, carbon counter and silver−silver chloride pseudo‐reference electrodes as composite coatings on plastic surface. The interference effect was identified as chloride ions interacting with the silver surface of the reference electrode and formation of soluble silver chloride complexes such as AgCl43−. By modification of the reference electrodes with Nafion membrane (5 % in alcohols), the interference was entirely eliminated. However, membrane coverage and uniformity can impact the electrodes reproducibility and performance. Hence, the sensor design was further considered and a microband format was produced lending favorable diffusive to capacitive current characteristics. Using the microband electrodes allowed As(III) detection with limit of detection of 0.8 ppb (in 4 M HCl electrolyte), inherently avoiding the problems of electrode fouling and maximizing analyte signal in river water samples. This is below the World Health Organization limit of 10 μg L−1 (ppb). The electrolyte system was chosen so as to avoid problems from other common metal ions, most notably Cu(II). The presented electrode system is cost effective and offers a viable alternative to the colorimetric test kits presently employed for arsenic analysis in drinking water.  相似文献   

5.
Mesoporous SiO2 of SBA-15 is reported to modify carbon paste electrodes for detecting epinephrine (EP). Carbon paste electrodes modified with synthesized SBA-15 show high sensitivity for voltammetric determination of EP, which is attributed to the strong adsorption ability of SBA-15 to EP and large surface area of the working electrode resulted from SBA-15 modification. The effects of pH value, amount of SBA-15 and scan rate were investigated. Under optimum conditions, the anodic peak current of EP was proportional to its concentration over the range from 1.0 × 10?6 to 6.0 × 10?5 mol L?1 and the limit of detection was 6.0 × 10?7 mol L?1. The results show mesoporous SiO2-modified carbon paste electrodes, particularly SBA-15-modificd electrodes, create new opportunities for sensitive, simple and suitable method in the electrochemical analysis of EP.  相似文献   

6.
For the first time, the positive carbon rod of zinc-carbon battery (battery carbon rod electrode, BCRE) was used as a new working electrode and its electrochemical behavior was compared with carbon paste and glassy carbon electrodes in KCl solution containing Fe(CN6)3–/4– ions as probe agent. Then, the sponge/raspberry-like Au nanoclusters (AuNCs) were synthesized on BCRE by one-step electrodeposition of HAuCl4 in phosphate and nitrate buffer solution and the electrochemical properties of surfaces was investigated in probe media and sulfuric acid. This fabrication method was simple, facile and controllable, without any seed, template or surfactant.  相似文献   

7.
Microwave activation of electrochemical processes has recently been introduced as a new technique for the enhancement and control of processes at electrode|solution (electrolyte) interfaces. This methodology is extended to processes at glassy carbon and boron-doped diamond electrodes. Deposition of both Pb metal and PbO2 from an aqueous solution of Pb2+ (0.1 M HNO3) are affected by microwave radiation. The formation of PbO2 on anodically pre-treated boron-doped diamond is demonstrated to change from kinetically sluggish and poorly defined at room temperature to nearly diffusion controlled and well defined in the presence of microwave activation. Calibration of the temperature at the electrode|solution (electrolyte) interface with the Fe3+/2+ (0.1 M HNO3) redox system allows the experimentally observed effects to be identified as predominantly thermal in nature and therefore consistent with a localized heating effect at the electrode|solution interface. The microwave-activated deposition of PbO2 on boron-doped diamond remains facile in the presence of excess oxidizable organic compounds such as ethylene glycol. An increase of the current for the electrocatalytic oxidation of ethylene glycol at PbO2/boron-doped diamond electrodes in the presence of microwave radiation is observed. Preliminary results suggest that the electrodissolution of solid microparticles of PbO2 abrasively attached to the surface of a glassy carbon electrode is also enhanced in the presence of microwave radiation. Electronic Publication  相似文献   

8.
A new type of carbon paste electrode modified with subbituminous and bituminous coal is presented. The operability of the coal carbon paste electrode with respect to the working potential window attainable was tested in various electrolytes. Cyclic voltammetry of the reference redox system [Fe(CN)6]3?/4? was performed to evaluate electron transfer kinetics. Open‐circuit sorption of Cd(II), Pb(II), and Cu(II) with subsequent anodic stripping voltammetry was used to pilot coal sorption ability. The coal modified carbon paste electrode was also examined as a support for mercury film deposition and anodic stripping voltammetry of metals.  相似文献   

9.
In this work, high‐performance dye‐sensitized solar cells (DSSCs) based on new low‐cost visible nickel complex dye (VisDye), TiO2 nanoparticle/nanotube composites electrodes, carbon nanoparticles counter electrodes, and ionic liquids electrolytes have been fabricated. The electronic structure, optical spectroscopy, and electrochemical properties of the VisDye were studied. Experimental results indicate that it is beneficial to improve the electron transport and power conversion efficiency using the nickel complex VisDye and TiO2 nanoparticle/nanotube composites. Under optimized conditions, the solar energy conversion efficiencies were measured. The short‐circuit current density (JSC), the open‐circuit voltage (VOC), the fill factor (FF), and the overall efficiency (η) of the DSSCs are 10.01 mA/cm2, 516 mV, 0.68, and 3.52%, respectively. This study demonstrates that the combination of new VisDye with TiO2 nanoparticle/nanotube composites electrodes and carbon nanoparticles counter electrodes provide a way to fabricate highly efficient dye‐sensitized solar cells in low‐cost production.  相似文献   

10.
为解决电化学电容器工作电压过低的问题, 本文以钽电解电容器的烧结型钽块为阳极, 聚苯胺(PANI)/TiO2电化学电容器复合电极为阴极, 成功制备了高能量密度、高工作电压的电解-电化学混合电容器. PANI/TiO2复合电极是通过在多孔阳极氧化钛纳米管阵列中电化学聚合PANI 制得. 该阴极具有优良的倍率特性, 当平均功率密度为0.55 mW·cm-2时, 对应的比容量仍达到10.0 mF·cm-2. 由于与电解电容器复合, 该混合电容器的单元工作电压可高达100 V. 而且电化学电容器阴极的比容量远大于阳极, 故阴极所需尺寸远小于阳极, 节省的空间可用于增大阳极尺寸, 从而使混合电容器的比容量极大提高. 所制备的混合电容器体积能量密度和质量能量密度分别是钽电解电容器的4 倍和3 倍. 将该混合电容器在100 V下进行短路充放电实验, 循环10000 次后发现容量未衰减, 等效串联电阻未增加, 显示出极好的循环稳定性和功率特性. 计算表明其最大功率密度高达847.5 W·g-1. 电化学阻抗谱显示其具有优良的阻抗特性和频率特性.  相似文献   

11.
Composite electrodes were prepared from chemical vapor deposition grown carbon nanofibers consisting predominantly of ca. 100 nm diameter fibers. A hydrophobic sol–gel matrix based on a methyl-trimethoxysilane precursor was employed and composites formed with carbon nanofiber or carbon nanofiber—carbon particle mixtures (carbon ceramic electrode). Scanning electron microscopy images and electrochemical measurements show that the composite materials exhibit high surface area with some degree of electrolyte solution penetration into the electrode. These electrodes were modified with redox probe solution in 2-nitrophenyloctylether. A second type of composite electrode was prepared by simple pasting of carbon nanofibers and the same solution (carbon paste electrode). For both types of electrodes it is shown that high surface area carbon nanofibers dominate the electrode process and enhance voltammetric currents for the transfer of anions at liquid|liquid phase boundaries presumably by extending the triple-phase boundary. Both anion insertion and cation expulsion processes were observed driven by the electro-oxidation of decamethylferrocene within the organic phase. A stronger current response is observed for the more hydrophobic anions like ClO4 or PF6 when compared to that for the more hydrophilic anions like F and SO42−. Presented at the 4th Baltic Conference on Electrochemistry, Greifswald, March 13–16, 2005  相似文献   

12.
Carbon-based symmetric supercapacitors (SCs) are known for their high power density and long cyclability, making them an ideal candidate for power sources in new-generation electronic devices. To boost their electrochemical performances, deriving activated carbon doped with heteroatoms such as N, O, and S are highly desirable for increasing the specific capacitance. In this regard, activated carbon (AC) self-doped with heteroatoms is directly derived from bio-waste (lima-bean shell) using different KOH activation processes. The heteroatom-enriched AC synthesized using a pretreated carbon-to-KOH ratio of 1:2 (ONS@AC-2) shows excellent surface morphology with a large surface area of 1508 m2 g−1. As an SC electrode material, the presence of heteroatoms (N and S) reduces the interfacial charge-transfer resistance and increases the ion-accessible surface area, which inherently provides additional pseudocapacitance. The ONS@AC-2 electrode attains a maximum specific capacitance (Csp) of 342 F g−1 at a specific current of 1 Ag−1 in 1 m NaClO4 electrolyte at the wide potential window of 1.8 V. Moreover, as symmetric SCs the ONS@AC-2 electrode delivers a maximum specific capacitance (Csc) of 191 F g−1 with a maximum specific energy of 21.48 Wh kg−1 and high specific power of 14 000 W kg−1 and excellent retention of its initial capacitance (98 %) even after 10000 charge/discharge cycles. In addition, a flexible supercapacitor fabricated utilizing ONS@AC-2 electrodes and a LiCl/polyvinyl alcohol (PVA)-based polymer electrolyte shows a maximum Csc of 119 F g−1 with considerable specific energy and power.  相似文献   

13.
The electrochemical behaviour of carbon paste electrodes prepared using nanocarbon and mineral oil was investigated and the results contrasted with different carbon and carbon pastes electrodes. The composition of carbon paste was studied by performing cyclic voltammetry performed in 0.1 M KCl solution in the presence of 4.0 mM Ru(NH3)6Cl3, a well‐characterized redox system commonly used to test the electrode behaviour. After optimisation of the paste composition, the sensors chosen were tested for the analysis and characterization of three different systems: Ru(NH3)63+/2+, FcCH2OH/FcCH2OH+ and acetaminophen. The ability to obtain high quality voltammetry from the nanocarbon electrode was demonstrated and simulation of the voltammetry allowed the extraction of electrode kinetic parameters with high precision.  相似文献   

14.
The design of complex heterostructured electrode materials that deliver superior electrochemical performances to their individual counterparts has stimulated intensive research on configuring supercapacitors with high energy and power densities. Herein we fabricate hierarchical tectorum‐like α‐Fe2O3/polypyrrole (PPy) nanoarrays (T‐Fe2O3/PPy NAs). The 3D, and interconnected T‐Fe2O3/PPy NAs are successfully grown on conductive carbon cloth through an easy self‐sacrificing template and in situ vapor‐phase polymerization route under mild conditions. The electrode made of the T‐Fe2O3/PPy NAs exhibits a high areal capacitance of 382.4 mF cm−2 at a current density of 0.5 mA cm−2 and excellent reversibility. The solid‐state asymmetric supercapacitor consisting of T‐Fe2O3/PPy NAs and MnO2 electrodes achieves a high energy density of 0.22 mWh cm−3 at a power density of 165.6 mW cm−3.  相似文献   

15.
The ability to achieve high areal capacitance for oxide-based supercapacitor electrodes with high active mass loadings is critical for practical applications. This paper reports the feasibility of the fabrication of Mn3O4-multiwalled carbon nanotube (MWCNT) composites by the new salting-out method, which allows direct particle transfer from an aqueous synthesis medium to a 2-propanol suspension for the fabrication of advanced Mn3O4-MWCNT electrodes for supercapacitors. The electrodes show enhanced capacitive performance at high active mass loading due to reduced particle agglomeration and enhanced mixing of the Mn3O4 particles and conductive MWCNT additives. The strategy is based on the multifunctional properties of octanohydroxamic acid, which is used as a capping and dispersing agent for Mn3O4 synthesis and an extractor for particle transfer to the electrode processing medium. Electrochemical studies show that high areal capacitance is achieved at low electrode resistance. The electrodes with an active mass of 40.1 mg cm−2 show a capacitance of 4.3 F cm−2 at a scan rate of 2 mV s−1. Electron microscopy studies reveal changes in electrode microstructure during charge-discharge cycling, which can explain the increase in capacitance. The salting-out method is promising for the development of advanced nanocomposites for energy storage in supercapacitors.  相似文献   

16.
Poly(benzopyrene) films were electrosynthesized on glassy carbon disk electrodes from benzo(a)pyrene by cyclic voltammetry in the presence of eriochrome black T, which forms strong complexes with lead ions. In consequence, by conditioning the films in high concentration of lead (0.1 mol dm?3 Pb(NO3)2) potentiometric sensitivity to lead ions down to 10?5 mol dm?3 Pb2+ was induced, and a novel type of lead‐sensitive electrode was obtained. The electrode is characterized by high stability of the potential readouts, good reproducibility of the calibration curves as well as a minor hysteresis effects. The performance of our lead‐sensitive electrode was favourable compared to PEDOT and PPy‐based electrodes doped with eriochrome black T. We conclude that poly(benzopyrene) doped with eriochrome black T is a new electroactive material that may be applied in sensor technology.  相似文献   

17.
A simple, convenient and sensitive flow-through cell incorporating multiple carbon fibres in a polyvinyl chloride tube was constructed for high performance liquid chromatography. The voltammetric behaviour, electrode treatment, stability and hydrodynamic voltammograms of such electrodes are discussed. An in-situ electrochemical pretreatment is proposed for activation and recovery of the activity of the carbon fibre electrode in flow-stream detection. The desirable detector was found to be nearly flow-rate independent. Catecholamines can be detected at concentrations as low as 2 × 10−9 M. The cell could be used in the mobile phase with little electrolyte. It was found that the solution resistance in the flow pathway was the major source of distortion of the shape of hydrodynamic voltammograms and of high noise at dilute electrolyte. Parallel detection using dual working electrodes is demonstrated for reversed-phase chromatographic separation of catecholamines.  相似文献   

18.
《Electroanalysis》2006,18(7):703-711
A simple procedure was developed to prepare a glassy carbon electrode modified with carbon nanotubes (CNTs) and thionin. Abrasive immobilization of CNTs on a GC electrode was achieved by gently rubbing the electrode surface on a filter paper supporting carbon nanotubes, then immersing the GC/CNTs‐modified electrode into a thionin solution (electroless deposition) for a short period of time (5–50 s for MWCNTs and 5–120 s for SWCNTs ). Cyclic voltammograms of the resulting modified electrode show stable and a well defined redox couple with surface confined characteristic at wide pH range 2–12. The electrochemical reversibility and stability of modified electrode prepared with incorporation of thionin into CNTs film was compared with usual methods for attachment of thionin to electrode surfaces such as electropolymerization and adsorption on the surface of preanodized electrodes. The formal potential of redox couple (E°′) shifts linearly toward the negative direction with increasing solution pH. The surface coverage of thionin immobilized on CNTs glassy carbon electrode was approximately 1.95×10?10 mol cm?2 and 3.2×10?10 mol cm?2 for MWCNTs and SWCNTs, respectively. The transfer coefficient (α) was calculated to be 0.3 and 0.35 and heterogeneous electron transfer rate constants (Ks) were 65 s?1 and 55 s?1 for MWCNTs/thionin and SWCNTs/thionin‐modified GC electrodes, respectively. The results clearly show a great facilitation of the electron transfer between thionin and CNTs adsorbed on the electrode surface. Excellent electrochemical reversibility of redox couple, high stability, technically simple and possibility of preparation at short period of time are of great advantages of this procedure for modification of electrodes.  相似文献   

19.
We present a new approach to explore the potential-dependent multi-colour co-reactant electrochemiluminescence (ECL) from multiple luminophores. The potentials at both the working and counter electrodes, the current between these electrodes, and the emission over cyclic voltammetric scans were simultaneously measured for the ECL reaction of Ir(ppy)3 and either [Ru(bpy)3]2+ or [Ir(df-ppy)2(ptb)]+, with tri-n-propylamine as the co-reactant. The counter electrode potential was monitored by adding a differential electrometer module to the potentiostat. Plotting the data against the applied working electrode potential and against time provided complementary depictions of their relationships. Photographs of the ECL at the surface of the two electrodes were taken to confirm the source of the emissions. This provided a new understanding of these multifaceted ECL systems, including the nature of the counter electrode potential and the possibility of eliciting ECL at this electrode, a mechanism-based rationalisation of the interactions of different metal-complex luminophores, and a previously unknown ECL pathway for the Ir(ppy)3 complex at negative potentials that was observed even in the absence of the co-reactant.

Exploration of potential-dependent, multi-colour co-reactant electrochemiluminescence from multiple luminophores at the working and counter electrodes reveals new pathways to emission.  相似文献   

20.
We describe the preparation and properties of bilayers of graphene- and multi-walled carbon nanotubes (MWCNTs) as an alternative to conventionally used platinum-based counter electrode for dye-sensitized solar cells (DSSC). The counter electrodes were prepared by a simple and easy-to-implement double self-assembly process. The preparation allows for controlling the surface roughness of electrode in a layer-by-layer deposition. Annealing under N2 atmosphere improves the electrode's conductivity and the catalytic activity of graphene and MWCNTs to reduce the I3 species within the electrolyte of the DSSC. The performance of different counter-electrodes is compared for ZnO photoanode-based DSSCs. Bilayer electrodes show higher power conversion efficiencies than monolayer graphene electrodes or monolayer MWCNTs electrodes. The bilayer graphene (bottom)/MWCNTs (top) counter electrode-based DSSC exhibits a maximum power conversion efficiency of 4.1 % exceeding the efficiency of a reference DSSC with a thin film platinum counter electrode (efficiency of 3.4 %). In addition, the double self-assembled counter electrodes are mechanically stable, which enables their recycling for DSSCs fabrication without significant loss of the solar cell performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号