首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photoexcitation of flexible conjugated polymers is invariably followed by a fast conformational/torsional relaxation towards a configuration favouring coplanarity of the conjugated segments. In general, the experimental relaxation rate constant (kCR) depends on the solvent viscosity (η) and temperature (T), and is not proportional to T/η. A theory capable of explaining the observed dependence of kCR on T and η over a wide range of these variables is not available. This gap is filled here by presenting a stochastic model that includes the participation of the oligomer side chain in storing and dissipating the stresses induced by photoexcitation. The model is able to account for the softening of solute–solvent interactions and its predictions are found to be in excellent agreement with the observed relaxation rate constants of a series of substituted p‐phenylenevinylene trimers [ChemPhysChem 2009 , 10, 448–454] on T, η and the size of the side‐chains.  相似文献   

2.
A new electroluminescent conjugated polymer consisting of 2,2′‐bipyridylenevinylene (BPyV) and 2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylenevinylene (MEH‐PV) moieties (BPy‐MEH‐PPV), was synthesized by incorporating an n‐dope type moiety, BPyV, and a p‐dope type moiety, MEH‐PV, into the polymer chain. This facile method provides a new approach to the synthesis of conjugated polymers with balanced ability of conducting electrons and holes. PBy‐MEH‐PPV exhibits tunable optical properties through protonation, and the emissive color can be progressively changed from orange to deep red depending on the degree of protonation.  相似文献   

3.
In this study, the optical, electrochemical, electrolumiscent, and photovoltaic properties of a series of poly(p‐phenylene vinylene) (PPV) derivatives bearing different dendritic pendants, poly{2‐[3′,5′‐bis(2″‐ethylhexyloxy)benzyloxy]‐1,4‐phenylenevinylene} (BE‐PPV), poly{2‐[2′,5′‐bis(3″,7″‐dimethyl)octyloxy]‐1,4‐phenylenevinylene} (BD‐PPV), poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylenevinylene] (MEH‐PPV), poly{2‐[3′,5′‐bis(2″‐ethylhexyloxy)benzyloxy]‐1,4‐phenylenevinylene}‐co‐poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylenevinylene] (BE‐co‐MEH‐PPV), and poly{2‐[2′,5′‐bis(3″,7″‐dimethyl)octyloxy]‐1,4‐phenylenevinylene}‐co‐poly[2‐methoxy‐5‐(3′,7′‐dimethyloctyloxy)‐1,4‐phenylenevinylene] (BD‐co‐MDMO‐PPV), were investigated. The steric pendants strongly affect the absorption spectra, photoluminescence (PL) sepctra, the onset oxidation/reduction potentials, and further affect the electrolumiscent and photovoltaic properties. Copolymerization can reduce the steric effect and improve the electrolumiscent and photovoltaic properties. The brightness of light‐emitting diodes base on copolymer BE‐co‐MEH‐PPV and BD‐co‐MDMO‐PPV reached 3988 and 3864 cd/m2, respectively, much higher than that based on homopolymer BE‐PPV (523 cd/m2) and BD‐PPV (333 cd/m2), also higher than that based on MEH‐PPV (3788 cd/m2). The power conversion efficiency (PCE) of solar cells based on BE‐co‐MEH‐PPV and BD‐co‐MDMO‐PPV reached 1.41, 0.76%, respectively, much higher than that based on BE‐PPV (0.24%) and BD‐PPV (0.14%). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Polymer solar cells were fabricated based on composite films of poly(2‐methoxy‐5‐(2′‐ethyl‐hexyloxy)‐1,4‐phenylenevinylene) (MEH‐PPV):fullerene derivative (6,6)‐phenyl‐C61‐butyric acid methyl ester (PCBM) with weight blend ratio of 1:3, 1:4 and 1:5, spin‐coated from chloroform (CF), chlorobenzene (CB), and o‐dichlorobenzene (ODCB) solutions, respectively. Photoinduced current and power conversion efficiency (PCE) of the devices show a dependence on the solvents. The solar cells have the highest PCE at 1:5 blend ratio. Transmission electron microscopy (TEM) morphology reveals that there are some voids in MEH‐PPV:PCBM films. The void number decreases with the solvent from CF to CB and ODCB. We found the voids are located at the bottom of the films through electron tomography technique by TEM and film bottom‐side morphology study by atomic force microscopy. The charge carrier transport efficiency and collection efficiency should decrease greatly due to the voids, and the more voids the film has, the more degree the efficiencies decrease. PCE of the solar cell prepared from CF is lower than that of the solar cells prepared from CB and ODCB. The void phenomenon of MEH‐PPV:PCBM based solar cell and method to investigate the void position provide an experimental evidence and research mentality to fabricate polymer solar cell with high performance.  相似文献   

5.
A significant improvement in the electroluminescence (EL) properties was observed for a poly{5‐methoxy‐2‐[(2′‐ethyl‐hexyl)‐oxy]‐p‐phenylenevinylene} (MEH–PPV)/poly(2,3‐diphenyl‐5‐octyl‐p‐phenylenevinylene) (DPO–PPV) blend after a thermal treatment at 200 °C for 2 h in vacuo to furnish the chemical bonding between polymer chains. 1H NMR spectroscopy and two‐photon excitation microscopy revealed that the chemical bonding turned the immiscible polyblend into a system more like a block copolymer with a vertically segregated morphology. Because both the lowest unoccupied molecular orbital and highest occupied molecular orbital levels of MEH–PPV in the wetting layer were higher than those of DPO–PPV in the upper layer, the heterojunction between the two layers of the polymers fit the category of so‐called type II heterojunctions. As a result, the turn‐on voltage of the polymer light‐emitting diode prepared with the thermally treated polyblend decreased to ~0.6 V, and the EL emission intensities and quantum efficiencies increased to about 4 times those of the untreated polyblend. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 62–69, 2006  相似文献   

6.
Two alkylthio‐substituted poly(p‐phenylenevinylene) (AT–PPV) derivatives, poly(2‐octylthio‐p‐phenylenevinylene) (OT–PPV) and poly[5‐methoxy‐2‐(2′‐ethyl‐hexylthio)‐p‐phenylenevinylene] (MEHT–PPV), were synthesized by a Heck coupling reaction for the investigation of the effect of alkylthio groups on the optoelectronic properties of poly(p‐phenylenevinylene) derivatives. The absorption peaks of OT–PPV and MEHT–PPV solutions were located at 431 and 438 nm, respectively. As for solid films, an OT–PPV film showed an absorption maximum wavelength at 444 nm, 13 nm redshifted in comparison with its solution value, whereas an MEHT–PPV film displayed the same absorption peak position as its dilute solution; this indicated that there was no interchain interaction in the MEHT–PPV film. Polymeric light‐emitting diodes (PLEDs) and polymer solar cells (PSCs) based on OT–PPV and MEHT–PPV were fabricated and characterized. Very narrow bandwidths of the electroluminescence (EL) spectra of the two AT–PPVs were found, with the full width at half‐maximum of the emission being 40 and 47 nm for OT–PPV and MEHT–PPV, respectively. The maximum EL efficiency of the single‐layer PLED based on MEHT–PPV with Al as a cathode reached 1.49 cd/A. The PSC based on a blend of OT–PPV and [6,6]‐phenyl‐C61 butyric acid methyl ester (PCBM) showed the power conversion efficiency of 1.4% under the illumination of AM1.5 (80 mW/cm2). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1279–1290, 2006  相似文献   

7.
Poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐p‐phenylenevinylene] (MEH‐PPV) with a molar mass of 26–47 × 104 g mol?1 and a polydispersity of 2.5–3.2 was synthesized by a liquid–solid two‐phase reaction. The liquid phase was tetrahydrofuran (THF) containing 1,4‐bis(chloromethyl)‐2‐methoxy‐5‐(2′‐ethylhexyloxy)benzene as the monomer and a certain amount of tetrabutylammonium bromide as a phase‐transfer catalyst. The solid phase consisted of potassium hydroxide particles with diameters smaller than 0.5 mm. The reaction was carried out at a low temperature of 0 °C and under nitrogen protection. No gelation was observed during the polymerization process, and the polymer was soluble in the usual organic solvents, such as chloroform, toluene, THF, and xylene. A polymer light‐emitting diode was fabricated with MEH‐PPV as an active luminescent layer. The device had an indium tin oxide/poly(3,4‐ethylenedioxylthiophene) (PEDOT)/MEH‐PPV/Ba/Al configuration. It showed a turn‐on voltage of 3.3 V, a luminescence intensity at 6.1 V of 550 cd/m2, a luminescence efficiency of 0.43 cd/A, and a quantum efficiency of 0.57%. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3049–3054, 2004  相似文献   

8.
In this contribution, we report a versatile method for tuning optical properties of poly(2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylenevinylene) (MEH‐PPV) in its solution with 1,2‐dichloroethane, accomplished by reacting with pyridinium formate (PF), a volatile organic salt. We can systematically control the positions of absorption and photoluminescent (PL) spectra of MEH‐PPV by adjusting the concentration of PF in the solution. The addition of 10 vol % PF caused a blue‐shift in the absorption spectra by about 65 nm. When the concentration of PF decreased to 0.1 vol %, the blue‐shift occurred to a lesser extent, about 25 nm. The measurements of PL spectra showed similar behaviors. The λmax shifted from 558 nm to 546 and 552 nm when 10 and 0.1 vol % of PF were added, respectively. The changes of PL colors from orange to yellow and green, respectively, were observed by naked eyes. Structural investigation by nuclear magnetic resonance and Fourier‐transformed infrared spectroscopy indicated that the changes of the optical properties were due to chemical modifications along the main chain and the side groups of MEH‐PPV. These results implied a simple route for engineering the HOMO–LUMO energy gap of MEH‐PPV, which could be utilized in advanced applications such as organic light‐emitting devices and solar cells. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 696–705, 2009  相似文献   

9.
Electrospinning is a powerful technique to produce nanofibers of tunable diameter and morphology for medicine and biotechnological applications. By doping electrospun nanofibers with inorganic and organic compounds, new functionalities can be provided for technological applications. Herein, we report a study on the morphology and optical properties of electrospun nanofibers based on the conjugated polymer poly[2‐methoxy‐5‐(2‐ethylhexyloxy)‐1,4‐phenylenevinylene] (MEH‐PPV) and poly(methylmethacrylate) (PMMA). Initially, we investigate the influence of the solvent, surfactant, and the polymer concentration on electrospinning of PMMA. After determining the best conditions, 0.1% MEH‐PPV was added to obtain fluorescent nanofibers. The optical characterizations display the successful impregnation of MEH‐PPV into the PMMA fibers without phase separation and the preservation of fluorescent property after fiber electrospinning. The obtained results show the ability of the electrospinning approach to obtain fluorescent PMMA/MEH‐PPV nanofibers with potential for optical devices applications. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1388–1394  相似文献   

10.
Fluorescence quenching processes of poly[2-methoxy-5-(2‘ethyl-hexoxy)-p-phenylene vinylene] (MEH-PPV) in solution by electron acceptors, O2 and acid, have been studied. Static quenching of the fluorescence from MEH-PPV by an electron acceptor (DDQ or TCNE) occurs due to electron transfer from MEH-PPV to the electron acceptor and this electron transfer quenching can be promoted by chloroform. Photooxidation takes place in the MEH-PPV solution and singlet oxygen is an intermediate in the photooxidation, according to the results of ESR spectroscopy. Acid also plays an important role in the fluorescence quenching process of MEH-PPV, by the protonation of the alkoxy groups in the molecular chain.  相似文献   

11.
Poly[2‐(2′‐ethylhexyloxy)‐5‐methoxy‐1,4‐phenylene‐(1‐cyanovinylene)] MEH‐CN‐PPV and its all‐trans model compound 1,4‐bis(α‐cyanostyryl)‐2‐(2‐ethylhexyloxy)‐5‐methyloxybenzene were synthesized via Knoevenagel condensation. All‐cis isomer and cistrans isomer of 1,4‐bis(α‐cyanostyryl)‐2‐(2‐ethylhexyloxy)‐5‐methyloxybenzene were prepared by the photoisomerization reaction. Comparison of the 1H NMR spectra between MEH‐CN‐PPV and three model compounds proved the occurrence of cis‐vinylene in the backbone of MEH‐CN‐PPV. According to the ratio between the cis‐vinylene signal and trans‐vinylene signal, the content of the cis‐vinylene could be estimated to be 15% in MEH‐CN‐PPV. This large cis‐vinylene content came from the rapid photochemical isomerization of cyanovinylene and was likely relative to the poor electroluminescence property of MEH‐CN‐PPV. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1105–1113, 2008  相似文献   

12.
An N‐phenylcarbazole‐containing poly(p‐phenylenevinylene) (PPV), poly[(2‐(4′‐carbazol‐9‐yl‐phenyl)‐5‐octyloxy‐1,4‐phenylenevinylene)‐alt‐(2‐(2′‐ethylhexyloxy)‐5‐methoxy‐1,4‐phenylenevinylene)] (Cz‐PPV), was synthesized, and its optical, electrochemical, and electroluminescent properties were studied. The molecular structures of the key intermediates, the carbazole‐containing boronic ester and the dialdehyde monomer, were crystallographically characterized. The polymer was soluble in common organic solvents and exhibited good thermal stability with a 5% weight loss at temperatures above 420 °C in nitrogen. A cyclic voltammogram showed the oxidation peak potentials of both the pendant carbazole group and the PPV main chain, indicating that the hole‐injection ability of the polymer would be improved by the introduction of the carbazole‐functional group. A single‐layer light‐emitting diode (LED) with a simple configuration of indium tin oxide (ITO)/Cz‐PPV (80 nm)/Ca/Al exhibited a bright yellow emission with a brightness of 1560 cd/m2 at a bias of 11 V and a current density of 565 mA/cm2. A double‐layer LED device with the configuration of ITO/poly(3,4‐ethylenedioxy‐2,5‐thiophene):poly (styrenesulfonic acid) (60 nm)/Cz‐PPV (80 nm)/Ca/Al gave a low turn‐on voltage at 3 V and a maximum brightness of 6600 cd/m2 at a bias of 8 V. The maximum electroluminescent efficiency corresponding to the double‐layer device was 1.15 cd/A, 0.42 lm/W, and 0.5%. The desired electroluminescence results demonstrated that the incorporation of hole‐transporting functional groups into the PPVs was effective for enhancing the electroluminescent performance. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5765–5773, 2005  相似文献   

13.
A series of poly(p‐phenylenevinylene)s (PPVs) with good solubility were synthesized from thermal elimination of precursor poly(2,5‐didodecyloxy‐p‐phenylenevinylene) at different temperature via Wessling method. The polymer photophysics were influenced by the thermal elimination condition, which was consistent with NMR and IR characterizations. The additional absorption peak at longer wavelength and the red‐shifted emission maximum both in solution and in film, for PPVs obtained at high elimination temperature, indicated the existence of longer conjugated blocks in these systems. The emission maximum for drop‐cast film (436 nm) for PPV obtained under 200°C (PPV200) was 16 nm blue shifted to the spin‐coated films (452 nm) or 29 nm to the solution (465 nm). The SEM study showed drop‐cast film had the morphology of isolated conjugated particles in the matrix while blurry linear structure was found for spin‐coated film, which was consistent with the photophysics. The discussion about this difference was carried out based on the consideration of the flexibility of the polymer chains and different conjugated length of PPV in different states.  相似文献   

14.
We use the long‐range‐corrected hybrid density functional theory models to study the effect of various conformational distortions of weak‐trans and strong‐cis nature on the spatial localization of charged states in poly(p‐phenylene vinylene) (PPV) and its derivative poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐p‐phenylene vinylene] (MEH‐PPV). The extent of self‐trapping of positive (P+) and negative (P?) polarons is observed to be highly sensitive to molecular conformation that, in turn, controls the distribution of atomic charges within the polymers. It is shown that, to reach good agreement with recent experimental data on lattice distortion for P+ and P? excitations, the polarization of the medium plays a critical role. The introduction of weak‐trans defects along the MEH‐PPV chain breaks the observed symmetry for P+ and P? excitations. The P? states exhibit more spatial localization owing to lattice relaxation than their vacuum counterparts in contrast to P+. These observations suggest higher mobilities of holes than that of electrons in MEH‐PPV, in agreement with the experimental observations. The predicted binding, reorganization, and solvation energies for PPV and MEH‐PPV are analyzed for this difference in the response behavior of holes and electrons for trans and cis distortions. This study allows for a better understanding of charge‐transport and photophysical properties in π‐conjugated organic materials by analyzing their underlying structure–property correlations. © 2013 Wiley Periodicals, Inc. 1 1 This article is a U.S. Government work, and as such, is in the public domain in the United States of America.
J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 935–942  相似文献   

15.
With anodic alumina with an ordered nanopore array used as a template, poly[2‐metoxy‐5‐(2′‐ethyl‐hexyloxy)‐p‐phenylene vinylene] (MEH–PPV) was embedded into the nanopores, and then two‐dimensional arrays of light‐emitting nanopolymers were prepared. By the measurement and analysis of photoluminescence and photoluminescence excitation spectra of the samples, it was demonstrated that the optical properties of the nano‐MEH–PPV arrays were obviously different from those of MEH–PPV films. The conformations of the MEH–PPV chains in the nanopores, films, and solutions and their effects on the optical properties were examined. It was determined experimentally that the conformations of the MEH–PPV chains in the solutions were maintained in the nano‐MEH–PPV arrays. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3037–3041, 2006  相似文献   

16.
《Chemphyschem》2005,6(11):2404-2409
Herein, we continue our investigation of the single‐molecule spectroscopy of the conjugated polymer poly[2‐methoxy,5‐(2‐ethylhexyloxy)‐p‐phenylene‐vinylene] (MEH‐PPV) at cryogenic temperatures. First, the low temperature microsecond dynamics of single MEH‐PPV conjugated polymer molecules are compared to the dynamics at room temperature revealing no detectible temperature dependence. The lack of temperature dependence is consistent with the previous assignment of the dynamics to a mechanism that involves intersystem crossing and triplet–triplet annihilation. Second, the fluorescence spectra of single MEH‐PPV molecules at low temperature are studied as a function of excitation wavelength (i.e. 488, 543, and 568 nm). These results exhibit nearly identical fluorescence spectra for different excitation wavelengths. This strongly suggests that electronic energy transfer occurs efficiently to a small number of low‐energy sites in the multichromophoric MEH‐PPV chains.  相似文献   

17.
This study reports the synthesis, curing, and optoelectronic properties of a solution‐processable, thermally cross‐linkable electron‐ and hole‐blocking material containing fluorene‐core and three periphery N‐phenyl‐N‐(4‐vinylphenyl)benzeneamine ( FTV ). The FTV exhibited good thermal stability with Td above 478 °C in nitrogen atmosphere. The FTV is readily cross‐linked via terminal vinyl groups by heating at 160 °C for 30 min to obtain homogeneous film with excellent solvent resistance. Multilayer PLED device [ITO/PEDOT:PSS/cured‐ FTV /MEH‐PPV/Ca (50 nm)/Al (100 nm)] was successfully fabricated using solution processed. Inserting cured‐ FTV is between PEDOT:PSS and MEH‐PPV results in simultaneous reduction in hole injection from PEDOT:PSS to MEH‐PPV and blocking in electron transport from MEH‐PPV to anode. The maximum luminance and maximum current efficiency were enhanced from 1810 and 0.27 to 4640 cd/m2 and 1.08 cd/A, respectively, after inserting cured‐ FTV layer. Current results demonstrate that the thermally cross‐linkable FTV enhances not only device efficiency but also film homogeneity after thermal curing. FTV is a promising electron‐ and hole‐blocking material applicable for the fabrication of multilayer PLEDs based on PPV derivatives. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 000: 000–000, 2012  相似文献   

18.
The quantum efficiencies of photoluminescence (PL) and electro‐luminescence (EL) of poly[2‐methoxy‐5‐(2′‐ethyl‐hexyloxy)‐1,4‐phenylenevinylene] (MEH‐PPV) were significantly increased by heat treatments under vacuum with further removing the undissolved portion. The UV–vis absorption was found to decrease with heating time, while PL intensity increased. The maximum PL quantum yield was 6.5 times that of the untreated MEH‐PPV, which was attributed to the reduction of chain aggregations and the interruption of conjugation length. The maximum EL quantum yield of their prepared ITO/PANI/MEH‐PPV/Ca/AL light emitting diodes (PLED) was 46 (at 3 V) times that of the untreated sample. A typical turn‐on voltage of 2.5 V for MEH‐PPV PLED was able to decrease to 1 V after heat treatments, which was believed to result from the decrease of cis linkages in the polymer chains as revealed by the 1H NMR spectroscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1705–1711, 2005  相似文献   

19.
Three new conjugated poly(p‐phenylene vinylene) (PPV) derivatives bearing triphenylamine side‐chain through a vinylene bridge, poly(2‐(4′‐(diphenylamino)phenylenevinyl)‐1,4‐phenylene‐vinylene) (DP‐PPV), poly(2‐(3′‐(3″,7″‐dimethyloctyloxy)phenyl)‐1,4‐phenylenevinylene‐alt‐2‐(4′‐ (diphenylamino)phenylenevinyl)‐1,4‐phenylenevinylene) (DODP‐PPV), and poly(2‐(4′‐(diphenylamino)phenylenevinyl)‐1,4‐phenylenevinylene‐co‐2‐(3′,5′‐bis(3″,7″‐dimethyloctyloxy)‐1,4‐phenylenevinylene) (DP‐co‐BD‐PPV), were synthesized according to the Gilch or Wittig method. Among the three polymers, the copolymer DP‐co‐BD‐PPV is soluble in common solvents with good thermal stability with 5% weight loss at temperatures higher than 386°C. The weight‐average molecular weight (Mw) and polydispersity index (PDI) of DP‐co‐BD‐PPV were 1.83 × 105 and 2.33, respectively. The single‐layer polymer light‐emitting diodes (PLEDs) with the configuration of Indium tin oxide (ITO)/poly (3,4‐ethylenedioxythiophene): poly(4‐styrene sulfonate)(PEDOT:PSS)/DP‐co‐BD‐PPV/Ca/Al were fabricated. The PLED emitted yellow‐green light with the turn‐on voltage of ca. 4.9 V, the maximum luminance of ca. 990 cd/m2 at 15.8 V, and the maximum electroluminescence (EL) efficiency of 0.22 cd/A. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
Non‐Stokes–Einstein relaxation : The rate constant of conformational relaxation of a phenylenevinylene trimer (see picture) in different solvents is proportional to η?α, with α values decreasing from close to unity (low viscosity) to zero at sufficiently high solvent viscosity. This behaviour is attributed to the flexible methylbutyl side chains of the trimer, which partially screen the solvent friction.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号