首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
《Analytical letters》2012,45(6):1203-1210
ABSTRACT

An electrochemical method using linear sweep voltammetry techniques was developed to determine nitrite ion in aqueous solution in the presence of nitrate. Nitrite solutions exhibited a well-defined oxidation wave at +1.0V vs SCE at vitreous carbon, while no oxidation process was observed for nitrate solutions. The pH of the nitrite solutions varied from 2.37 to 5.60 and no change was observed in the Ep values, except for the pH 5.60 solution, where little change was verified. The potential also did not vary with change in the nitrite concentration in the 5.0 x 10?5 to 7.0 x 10?4 mol L?1 range. Very good straight lines for plots of current versus nitrite concentration in the 7.0 x 10?5 to 7.0 x 10?4 mol L?1 range were obtained; the correlation coefficient was never worse than 0.990. The nitrite determination was also performed in the presence of 1.0 x 10?3 mol L?1 of NO3 ? ions. The addition of NO3 ? did not change significantly the current values even when it was added in one hundred times molar excess.  相似文献   

2.
Poly(2-amino-5-(4-pyridinyl)-1,3,4-thiadiazole) (PAPT) modified glassy carbon electrode (GCE) was fabricated and used for the simultaneous determinations of dopamine (DA), uric acid (UA) and nitrite (NO2 ?) in 0.1 mol?L?1 phosphate buffer solution (PBS, pH 5.0) by using cyclic voltammetry and differential pulse voltammetry (DPV) techniques. The results showed that the PAPT modified GCE (PAPT/GCE) not only exhibited electrocatalytic activities towards the oxidation of DA, UA and NO2 ? but also could resolve the overlapped voltammetric signals of DA, UA and NO2 ? at bare GCE into three strong and well-defined oxidation peaks with enhanced current responses. The peak potential separations are 130 mV for DA–UA and 380 mV for UA–NO2 ? using DPV, which are large enough for the simultaneous determinations of DA, UA and NO2 ?. Under the optimal conditions, the anodic peak currents were correspondent linearly to the concentrations of DA, UA and NO2 ? in the ranges of 0.95–380 μmol?L?1, 2.0–1,000 μmol?L?1 and 2.0–1,200 μmol?L?1 for DA, UA and NO2 ?, respectively. The correlation coefficients were 0.9989, 0.9970 and 0.9968, and the detection limits were 0.2, 0.35 and 0.6 μmol?L?1 for DA, UA and NO2 ?, respectively. In 0.1 mol?L?1 PBS pH 5.0, the PAPT film exhibited good electrochemical activity, showing a surface-controlled electrode process with the apparent heterogeneous electron transfer rate constant (k s) of 25.9 s?1 and the charge–transfer coefficient (α) of 0.49, and thus displayed the features of an electrocatalyst. Due to its high sensitivity, good selectivity and stability, the modified electrode had been successfully applied to the determination of analytes in serum and urine samples.  相似文献   

3.
Mesoporous carbon ceramic SiO2/50 wt % C (SBET=170 m2 g?1), where C is graphite, were prepared by the sol‐gel method. The materials were characterized using N2 sorption isotherms, scanning electron microscopy, and conductivity measurements. The matrix was used as support for the in situ immobilization of Mn(II) phthalocyanine (MnPc) on their surface. XPS was used to determine the Mn/Si atomic ratios of the MnPc‐modified materials. Pressed disk electrodes were prepared with the MnPc‐modified matrix, and tested as an electrochemical sensor for nitrite oxidation. The linear response range, sensitivity, detection limit and quantification limit were 0.79–15.74 µmol L?1, 17.31 µA L µmol?1, 0.02 µmol L?1 and 0.79 µmol L?1, respectively, obtained using cyclic voltammetry. The repeatability of the proposed sensor, evaluated in terms of relative standard deviation was 1.7 % for 10 measurements of a solution of 12.63 µmol L?1 nitrite. The sensor employed to determine nitrite in sausage meat, river and lake water samples showed to be a promising tool for this purpose.  相似文献   

4.
This work reports an in situ cobalt(II) phthalocyanine (CoPc) synthesis on a SiO2/SnO2 (SiSn) matrix surface obtained by the sol‐gel method and its electrocatalytic activity for oxidation of nitrite. A rigid disk electrode with SiSn/CoPc was used to study the electrooxidation of nitrite by the cyclic voltammetric, chronoamperometric techniques and differential pulse voltammetry (DPV). The adsorbed phthalocyanine electrocatalyzed nitrite oxidation at 0.73 V (versus SCE) using the DPV technique. The anodic peak current intensities, plotted from differential pulse voltammograms in 1 mol L?1 KCl for the concentration range 0.002 to 3.85 mmol L?1 of nitrite were linear, with a correlation coefficient of 0.998 and a detection limit of 0.95 μmol L?1.  相似文献   

5.
A new podand of 1,1′‐thia‐bis‐[1‐(chloroethan‐2‐acetamid‐α‐oxy)] naphtol was synthesized and used as a suitable carrier for Ag+ PVC membrane electrode. The electrode exhibited linear response with a Nernstian slope of (59.5±0.8 mV/decade) within a wide concentration range of 1.0×10?7 to 1.5×10?2 mol L?1 silver ions. The electrode had a fast response time of <10 s and detection limit of 8.6×10?8 mol L?1 with a working pH range from 3.7 to 9.0. The electrode was highly selective for Ag(I) ions over a large number of cations such as alkali, alkaline earth, and heavy metal ions. The proposed sensor has been applied as an indicator electrode for indirect determination of vitamin B1 in tablets by determination of Cl? ions in this compound with a standard solution of Ag(NO3).  相似文献   

6.
《Electroanalysis》2004,16(17):1401-1405
The immobilization of tris(2,2′‐bipyridyl)ruthenium(II), Ru(bpy)32+, at a glassy carbon electrode was achieved by entrapping the Ru(bpy)32+ in a vapor deposited titania sol‐gel membrane. The electrogenerated chemiluminescence (ECL) of the immobilized Ru(bpy)32+ was studied. The Ru(bpy)32+ modified electrode showed a fast ECL response to both oxalate and proline. The ECL intensity was linearly related to concentrations of oxalate and proline over the ranges from 20 to 700 μmol L?1 and 20 to 600 μmol L?1, respectively. The detection limits for oxalate and proline at 3σ were 5.0 μmol L?1 and 4.0 μmol L?1, respectively. This electrode possessed good precision and stability for oxalate and proline determinations. The electrogenerated chemiluminescence mechanism of proline system was discussed. This work provided a new way for the immobilization of Ru(bpy)32+ and the application of titania sol‐gel membrane in electrogenerated chemiluminescence.  相似文献   

7.
《中国化学》2017,35(8):1317-1321
A novel non‐enzymatic nitrite sensor was fabricated by immobilizing MnOOH‐PANI nanocomposites on a gold electrode (Au electrode). The morphology and composition of the nanocomposites were investigated by transmission electron microscopy (TEM ) and Fourier transform infrared spectrum (FTIR ). The electrochemical results showed that the sensor possessed excellent electrocatalytic ability for NO2 oxidation. The sensor displayed a linear range from 3.0 μmol•L−1 to 76.0 mmol•L−1 with a detection limit of 0.9 μmol•L−1 (S/N = 3), a sensitivity of 132.2 μA •L•mol−1•cm−2 and a response time of 3 s. Furthermore, the sensor showed good reproducibility and long‐term stability. It is expected that the MnOOH‐PANI nanocomposites could be applied for more active sensors and used in practice for nitrite sensing.  相似文献   

8.
《Analytical letters》2012,45(8):1407-1412
Abstract

A spectrophotometric method was developed to determine nitrite using safranin as color reagent. The reaction between nitrite and safranin produces a safranin-HNO2 species, which exhibits absorption peaks at 280, 349, 420(shoulder) and 610 nm. The peak at 610 nm was chosen as the analysis wavelength because nitrite ion and safranin do not present absorption bands in this region. The Lambert-Beer law was obeyed in the concentration range 7.0 × 10?6 - 5.0 × 10?5M. The effects of various ions on absorbance of the safranin-HNO2 species were studied; the nitrite analysis can be performed without interference in the presence of the ions SCN?, Br?, CH3COO?, Cl? (≤ 1.0 × 10?3 M) and NO3 ? (< 1.0 × 10?5 M). The SO4 = does not interfere even at a concentration of 0.25M.  相似文献   

9.
The synthesis and properties of the ion exchange polymer 3‐n‐propyl(3‐methylpyridinium)silsesquioxane chloride (SiPy+Cl?) are described. Based on the Langmuir model, the equilibrium constant at the solid‐solution interface for the reaction, SiPy+Cl?+NO ?SiPy+NO , was calculated for nitrite adsorption. The value found, β=8.7×103 L mol?1, indicates good affinity of the anion for the solid phase. A carbon paste electrode of the material was tested for NO oxidation and a linear response, in the concentration range between 6.3 and 143.6 μmol L?1, was obtained by amperometry. The analytical applicability of the proposed system was ascertained by the satisfactory results attained in its application to monitoring of nitrite in natural waters.  相似文献   

10.
Peroxynitrite and nitrite ions are the diamagnetic products of photolysis (with light at a wavelength of 253.7 nm) of alkaline-earth nitrates; the paramagnetic products and hydrogen peroxide were not found. The structural water in alkaline-earth nitrate crystals did not affect the qualitative composition of the photodecomposition products. The quantum yield of nitrite ions was 0.0012, 0.0038, 0.0078, and 0.0091 quanta?1 and that of peroxynitrite ions was 0.0070, 0.0107, 0.0286, and 0.0407 quanta?1 for Sr(NO3)2, Ba(NO3)2, Ca(NO3)2 · 4H2O, and Mg(NO3)2 · 6H2O, respectively.  相似文献   

11.
A sensitive enzymatic biosensor has been developed for the detection of hydrogen peroxide (H2O2), nitrite ( ) and trichloroacetic acid (TCA) by using hemoglobin (Hb) immobilized on activated screen printed carbon electrode (ASPCE) and zinc oxide (ZnO) composite. A pair of well defined redox peaks is observed with a heterogeneous electron transfer rate constant (Ks) of 5.27 s?1 for Hb at ASPCE/ZnO. The biosensor exhibits the detection of H2O2, TCA and in the concentration range of 0.5–129.5 µmol L?1, 2.5–72.5 mmol L?1 and 0.2–674 µmol L?1 with the detection limit of 0.083 µmol L?1, 0.12 mmol L?1 and 0.069 µmol L?1, respectively.  相似文献   

12.
A single‐piece solid‐contact Pb2+‐selective electrode was prepared by adding a thiophene oligomer into the ion‐selective cocktail directly. The one‐step fabrication yielded an electrode with Nernstian response spanning a wide concentration range of 10?3–10?8 mol L?1, and detection limit as low as 5.6×10?9 mol L?1. The electrode had a quick response time of approximately 10–15 s and showed excellent selectivity over the most common univalent and divalent cations. The practical application of the proposed electrode has been tested by determining Pb2+ in real water samples.  相似文献   

13.
Cu2O nanoparticles (nano-Cu2O) modified glassy carbon electrode (GCE) was fabricated and used to investigate the electrochemical behaviour of 4-nitrophenol (4-NP) by cyclic voltammetry (CV), chronoamperometry (CA), chronocoulometry (CC) and differential pulse voltammetry (DPV). Compared with GCE, a remarkable increase in oxidation peak current was observed. It indicates that nano-Cu2O exhibits remarkable enhancement effect on the electrochemical oxidation of 4-NP. Under the optimised experimental conditions, the oxidation peak currents were propotional to 4-NP concentration in the range from 1.0?×?10?6 to 4.0?×?10?4?mol?L?1 with a detection limit of 5.0?×?10?7?mol?L?1 (S/N?=?3). The fabricated electrode presented good repeatability, stability and anti-interference. Finally, the proposed method was applied to determine 4-NP in water samples. The recoveries for these samples were from 94.60% to 105.5%.  相似文献   

14.
A system of Pt nanoparticles and poly(ortho‐phenylenediamine) film electrochemically deposited onto a glassy carbon electrode (GCE/PoPD/Pt) was fabricated. Scanning electron microscopy, Fourier‐transform infrared spectroscopy, and atomic force microscopy techniques were used to identify the surface characteristics of the composite electrode. The conductive polymers and Pt nanoparticles together resulted in a synergistic effect, and the new formed surface was highly active against polyphenolic structures. Rosmarinic acid (RA) and protocatechuic acid (PCA) are phenolic compounds found in plants, and they are used in many applications, particularly as pharmaceuticals. The GCE/PoPD/Pt was used for the simultaneous determination of RA and PCA in a pH 2.0 H2SO4 solution for the first time. The RA and PCA concentrations were determined using differential pulse voltammetry (DPV) and chronoamperometry. By the amperometry measurement, for RA and PCA, a linear relation was observed in the concentration ranges of 1–55 μmol L?1 and 1–60 μmol L?1, with detection limits of 0.5 μmol L?1 and 0.6 μmol L?1, respectively. In the simultaneous determination with DPV, the detection limits for both RA and PCA were calculated as 0.7 μmol L?1. The GCE/PoPD/Pt was successfully used for the simultaneous determination of RA and PCA in a real sample, and its accuracy was verified by high‐performance liquid chromatography studies.  相似文献   

15.
Miniaturized atmospheric pressure glow discharges (APGDs) were generated in contact with small sized flowing liquid cathode systems. As anodes a solid pin electrode or a miniature flow Ar microjet were applied. Both discharge systems were operated in the open to air atmosphere. Hydrogen peroxide (H2O2) as well as ammonium (NH4 +), nitrate (NO3 ?), and nitrite (NO2 ?) ions were quantified in solutions treated by studied discharge systems. Additionally, an increase in the acidification of these solutions was noted in each case. Emission spectra of the near cathode zone of both systems were measured in order to elucidate mechanisms that lead to the formation of active species in gas and liquid phases of the discharge. Additionally, the concentration of active species in the liquid phase (H2O2, NH4 +, NO3 ? and NO2 ?) was monitored as a function of the solution uptake rate and the flow rate of Ar. The suitability of investigated discharge systems in the water treatment was tested on artificial wastewaters containing an organic dye (methyl red), hardly removable by classical methods non-ionic surfactants (light Triton x-45 and heavy Triton x-405) and very toxic Cr(VI) ions. Preliminary results presented here indicate that both investigated flow-through APGD systems may successfully be applied for the efficient and fast on-line continuous flow chemical degradation of toxic and hazardous organic and inorganic species in wastewater solutions.  相似文献   

16.
《Electroanalysis》2006,18(3):253-258
The anodic voltammetric behavior of carbaryl on a boron‐doped diamond electrode in aqueous solution is reported. The results, obtained by square‐wave voltammetry at 0.1 mol L?1 Na2SO4 and pH 6.0, allow the development of a method to determine carbaryl, without any previous step of extraction, clean‐up, preconcentration or derivatization, in the range 2.5–30.0×10?6 mol L?1, with a detection limit of 8.2±0.2 μg L?1 in pure water. The analytical sensitivity of this electrochemical method diminished slightly, from 3.07 mA mmol?1 L to 2.90 mA mmol?1L, when the electrolyte was prepared with water samples collected from two polluted points in an urban creek. In these conditions, the recovery efficiencies obtained were around 104%. The effect of other pesticides (fenthion and 4‐nitrophenol) was evaluated and found to exert a negligible influence on carbaryl determination. The square‐wave voltammetric data obtained for carbaryl were typical of an irreversible electrode process with mass transport control. The combination of square‐wave voltammetry and diamond electrodes is an interesting and desirable alternative for analytical determinations.  相似文献   

17.
The present work explores, for the first time, the electrocatalytic oxidation of ascorbic acid (AscH2) and its determination in the presence of uric acid (UA) on the in situ activated 4‐nitrophthalonitrile modified carbon paste electrode. The kinetic constant κ for the catalytic reaction for the electrocatalytic oxidation of ascorbic acid, evaluated by cyclic voltammetry, chronoamperometry and RDE voltammetry provided values around 106 L mol?1 s?1. The sensor provided a linear response range for AscH2 and UA from 5.0 up to 120.0 μmol L?1 with detection limits of 1.6 μmol L?1and 1.3 μmol L?1, respectively. The sensor was applied for the simultaneous determination of AscH2 and UA in urine samples and the average recoveries for these samples were 99.8 (±3.1)% and 99.9 (±2.1)%, respectively .  相似文献   

18.
Flow injection analysis with amperometric detection (FIA‐AD) at screen‐printed carbon electrodes (SPCEs) in optimum medium of Britton‐Robinson buffer (0.04 mol ? L?1, pH 2.0) was used for the determination of three tumor biomarkers (homovanillic acid (HVA), vanillylmandelic acid (VMA), and 5‐hydroxyindole‐3‐acetic acid (5‐HIAA)). Dependences of the peak current on the concentration of biomarkers were linear in the whole tested concentration range from 0.05 to 100 μmol ? L?1, with limits of detection (LODs) of 0.065 μmol ? L?1 for HVA, 0.053 μmol ? L?1 for VMA, and 0.033 μmol ? L?1 for 5‐HIAA (calculated from peak heights), and 0.024 μmol ? L?1 for HVA, 0.020 μmol ? L?1 for VMA, and 0.012 μmol ? L?1 for 5‐HIAA (calculated from peak areas), respectively.  相似文献   

19.
A new macrocyclic ligand, 1,4,8,11-tetraazacyclotetradecane-1,8-bis(methylphosphonic acid)(dipon), is selective complexing agent for copper(II) over other transition metal ions. The ligand was tested for analytical applications of copper(II) determination. Spectrophotometric determination under optimal experimental conditions (?log [H+]= 5.5, c L≈ 5 × 10?4 mol L?1, λ= 310 nm) is valid in dynamic range (5–200)× 10?6 mol L?1 with detection limit 2.2 × 10?6 mol L?1, i.e. 0.14 μg ml?1. Volumetric determination of copper(II) with standardized dipon solution was used for copper(II) determination at micromolar concentration level without any necessity to sequester interfering metal ions. A sharp end point of titration was detected by UV/VIS spectrophotometry. Both methods were tested on artificial and real samples (spiked mineral water, alloys) and gave satisfactory results without any systematic error. The advantage of both methods is their simplicity, rapidity and no sensitivity to the presence of other metal ions.  相似文献   

20.
People suffered from essential hypertension have increased oxidative stress. Thus, adding vitamin C to their medical therapy resulted in decreasing the oxidative stress and increasing the antioxidant status. This may prevent further vascular damage due to the oxidative stress, leading to a better diagnosis in critical hypertension patients. A novel sensor was fabricated based on NdFeO3 nano‐perovskite/glycine/carbon nanotubes modified carbon paste electrode in presence of sodium dodecyl sulfate; GLNFCNTCP‐SDS for electrochemical sensing and simultaneous determination of antihypertensive and antioxidant drugs, Amlodipine (AML) and ascorbic acid. The developed nanocomposite showed interactive characteristics of all the modifiers as high conductivity, enhanced surface area, surface fouling resistance and stability. This leads to accelerated electron transfer rate and increased current response of electro‐oxidation of AML by 8.3 folds compared to unmodified electrode. The method validity was investigated successfully by the quantitative analysis of AML in human urine samples and Norvasc tablets with acceptable recovery results. The featured merits of the proposed composite in the analysis of AML in human urine samples were; wide concentration range of 0.003 μmol L?1 to 200 μmol L?1, sensitivity of 113.2 μA/μmol L?1, detection limit of 0.704 nmol L?1, and quantification limit of 2.35 nmol L?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号