首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Electroanalysis》2003,15(14):1198-1203
A portable spectroelectrochemical instrument capable of performing in situ sensing has been developed, extending the applicability of spectroelectrochemistry for chemical sensing. All components of the instrument were designed to facilitate real‐time simultaneous display of optical and electrochemical data for remote spectroelectrochemical measurements. Prior to this point in time, spectroelectrochemical measurements were confined to a laboratory setting, and remote analysis was not possible using custom or commercially available instrumentation. The novel instrumentation includes a software package for a portable computer, a small (paperback book sized) optical and electrochemical control unit, and an even smaller remote potentiostat. When the remote potentiostat is operated using fiber optic communication coupled with nine volt battery operation, the unit may operate for finite amounts of time at distances limited only by the attenuation of light in the optical fiber. Comparative studies of the custom instrument with commercially available electrochemical instrumentation were performed and showed excellent agreement. This unit was also tested using the ferricyanide/ferrocyanide reversible electrochemical couple by comparing it to bench top spectroelectrochemical instrumentation previously developed by our group.  相似文献   

2.
The time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) positive and negative ion spectra of poly(2‐vinylpyridine) (P2VP) and poly(4‐vinylpyridine) (P4VP) were analyzed using density functional theory calculations. Most of the ions from these structural isomers shared the same accurate mass, but had different relative abundance. This could be attributed to the fact that from a thermodynamics perspective, the disparity in the molecular structures can affect the ion stability if we assume that they shared the same mechanistic pathway of formation with similar reaction kinetics. The molecular structures of these ions were assigned, and their stability was evaluated based on calculations using the Kohn‐Sham density functional theory with Becke's 3‐parameter Lee‐Yang‐Parr exchange‐correlation functional and a correlation‐consistent, polarized, valence, double‐zeta basis set for cations and the same basis set with a triple‐zeta for anions. The computational results agreed with the experimental observations that the nitrogen‐containing cations such as C5H4N+ (m/z = 78), C8H7N (m/z = 117), C8H8N+ (m/z = 118), C9H8N+ (m/z = 130), C13H11N2+ (m/z = 195), C14H13N2+ (m/z = 209), C15H15N2+ (m/z = 223), and C21H22N3+ (m/z = 316) ions were more favorably formed in P2VP than in P4VP due to higher ion stability because the calculated total energies of these cations were more negative when the nitrogen was situated at the ortho position. Nevertheless, our assumption was invalid in the formation of positive ions such as C6H7N+˙ (m/z = 93) and C8H10N+ (m/z = 120). Their formation did not necessarily depend on the ion stability. Instead, the transition state chemistry and the matrix effect both played a role. In the negative ion spectra, we found that nitrogen‐containing anions such as C5H4N? (m/z = 78), C6H6N? (m/z = 92), C7H6N? (m/z = 104), C8H6N? (m/z = 116), C9H10N? (m/z = 132), C13H11N2? (m/z = 195), and C14H13N2? (m/z = 209) ions were more favorably formed in P4VP, which is in line with our computational results without exception. We speculate that whether anions would form from P2VP and P4VP is more dependent on the stability of the ions.  相似文献   

3.
Summary: Octa(propylglycidyl ether) polyhedral oligomeric silsesquioxane (OpePOSS) was used as the crosslinking agent to prepare the nanocrosslinked poly(4‐vinylpyridine) (P4VP) with POSS content up to 55.2 wt.‐%. The formation of the crosslinked structure is ascribed to the macromolecular reaction between pyridine rings of P4VP and epoxide groups of OpePOSS. The POSS‐crosslinked P4VP displayed enhanced glass transition temperatures (Tgs) and an improved thermal stability in terms of the results of thermal analysis.

Crosslinking of poly(4‐vinylpyridine) with octa(propylglycidyl ether) polyhedral oligomeric silsesquioxane.  相似文献   


4.
Melt‐processable blends were prepared from rigid molecules of an ionically modified poly(p‐phenylene terephthalamide) (PPTA) and flexible‐coil molecules of poly(4‐vinylpyridine) (PVP). Dynamic mechanical analyses of blends with 50% or more of the ionic PPTA component revealed the presence of two distinct phases. The glass‐transition temperature of the more stable, ionic PPTA‐rich phase increased linearly with the ionic PPTA content. The second phase present in these blends was an ionic PPTA‐poor, or a PVP‐rich, phase. For this phase, a reasonably good fit of the data, showing the glass‐transition temperature as a function of the ionic PPTA content, was achieved between the results of this study and the reported results of previous investigation of molecular composites of the same two components with ionic PPTA contents of 15 wt % or less. The possible influence of annealing on the blend structure of a 90/10 blend of ionic PPTA and PVP was examined. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1468–1475, 2003  相似文献   

5.
Miscibility and strong specific interactions that occurred within homoblends of poly(styrene‐co‐4‐vinylpyridine) containing 15 mol % of 4‐vinylpyridine (PS4VP15) and poly(styrene‐co‐methacrylic acid) containing 15 mol % of methacrylic acid (PSMA15) have been examined by Fourier Transform infrared spectroscopy and DSC. The observed positive deviation of the glass transition temperature of the blends from the linear average line, was analyzed by the frequently used theoretical conventional approaches including the one very recently proposed by Brostow. A better fit was obtained when this latter is used. A reasonable agreement with experimental values was also obtained when the theoretical fitting parameter free method developed by Coleman, is applied to predict the composition dependence of the Tg of this system. A thermodynamic analysis of hydrogen bonding in this system was carried using the Painter‐Coleman association model and the variation of the Gibbs function of mixing and its different contributions and corresponding phase diagrams as a function of temperature and composition were estimated. This analysis predicted PSMA15 to be miscible with PS4VP15 in the whole composition range up to 150 °C. Above this temperature, a partial miscibility is predicted when the PS4VP15 is in excess. The DSC results are in agreement with these predictions. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 923–931, 2009  相似文献   

6.
Summary: We report the multiple morphologies and their transformation of polystyrene‐block‐poly(4‐vinylpyridine) (PS‐b‐P4VP) in low‐alkanol solvents. In order to improve the solubility of polystyrene block in alcohol solvents, the solution of block copolymer sample was treated at a higher temperature, and then the influence of rate of decreasing temperature on multiple morphologies (including spheres, rods, vesicles, porous vesicles, large compound vesicles, and large compound micelles) was observed. The transformation of spheres to rods, to tyre‐shaped large compound micelles, and to sphere‐shaped large compound micelles was also realized. The formation mechanisms of the multiple morphologies and their transformation are discussed briefly.

Aggregates of PS‐P4VP formed in butanol by quenching from 110 °C to room temperature.  相似文献   


7.
We successfully demonstrated microliter (μL) volume determination of Mercury (Hg) using an in‐built screen‐printed three electrodes containing partially crosslinked poly(4‐vinlylpyridine) (designated as pcPVP) modified carbon‐working, carbon‐counter, and Ag+‐quasireference electrodes (SPE/pcPVP) in a pH 4 acetate buffer solution with 2 M KCl by using the square wave anodic stripping voltammetric (SWASV) technique. Instrumental and solution phase conditions were systematically optimized. Experiments were carried out by simply placing a 500 μL‐droplet of Hg containing real sample mixed with the base electrolyte on the SPE/pcPVP surface. The SPE/Ag+ quasi‐reference system shifted the Hg‐SWASV detection potential ca. 250 mV positive, but the quantitative current values were appreciably similar to that of a standard Ag/AgCl reference electrode. Under optimal condition, the calibration graph is linear in the window of 100–1000 ppb of the Hg droplet system with a detection limit of 69.5 ppb (S/N=3). Finally real sample assays were demonstrated for prohibited cosmetic Hg containing skin‐lightening agents in parallel with ICP‐OES measurements.  相似文献   

8.
LinNIU  FengHuaWEI 《中国化学快报》2002,13(11):1119-1120
The electrocatalytic prpertics of platinum microparticles incorporated into poly-(vinylpyridine)(PVP) films ,a conducting polymer with good conductivity and stability,were investigated for hydrogen evolution and formic acid electrooxidation in acidic media,It was found that the catalytic effects depend mainly on the size and amounts of the platinum microparticles dispersed in the polymer layer.  相似文献   

9.
The immobilization of molybdenum (Mo) compounds on poly(4‐vinylpyridine) (P4VP) microspheres for catalytic epoxidation was reported. P4VP‐supported Mo compounds were highly efficient and selective for the epoxidation of cis‐cyclooctene using hydrogen peroxide (H2O2) as oxygen source. When ethanol was used as solvents, outstanding catalytic activity and selectivity were observed for Mo‐containing catalysts in the epoxidation of cis‐cyclooctene. A completely green epoxidation system based on H2O2 and cleaner solvent has been achieved, and the heterogenized Mo catalyst can be recovered for five times without loss of its activity. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 558–562, 2010  相似文献   

10.
This paper aims to report the fabrication of biodegradable thin films with micro‐domains of cylindrical nanochannels through the solvent‐induced microphase separation of poly(L ‐lactide)‐block‐poly(ethylene glycol)‐block‐poly(L ‐lactide) (PLA‐b‐PEG‐b‐PLA) triblock copolymers with different block ratios. In our experimental scope, an increase in each of the block lengths of the PLA and PEG blocks led to both a variation in the average number density (146 to 32 per 100 µm2) and the size of the micro‐domains (140 to 427 nm). Analyses by atomic force microscopy (AFM) and fluorescence microscopy indicated that the hydrophilic PEG nanochannels were dispersed in the PLA matrix of the PLA‐b‐PEG‐b‐PLA films. We demonstrated that the micro‐domain morphology could be controlled not only by the block length of PEG, but also by the solvent evaporation conditions.

  相似文献   


11.
Fluorescence intensities of poly(2‐vinylpyridine) (P2VP) and poly(4‐vinylpyridine) (P4VP) in H2SO4/H2O solutions were increased with increasing acid concentration. The intensities for P2VP were found to be six times stronger than that of P4VP. These differences were accounted for by the microenvironment of protonated pyridinium group. The ion binding properties of 4‐methylpyridine (4MP), P2VP, and P4VP were investigated in methanol using Tb3+ as a fluorescence probe. The increase of fluorescence intensity of Tb3+ in [P2VP–Tb3+] and [P4VP–Tb3+] complexes is due to both the replacement of the inner coordinated methanol molecules and ligand‐to‐metal energy transfer. The model compound 4MP was inefficient from this point of view, and the results were attributed to the polymer cooperative effect. Reduced viscosities of poly(vinylpyridine)s (PVP) in methanol were similar to nonionic polymers; however, when TbCl3 was added into the solution, the viscosities increased upon dilution. These results also indicated that PVP form complexes with Tb3+ in methanol. When diluted, the counterions Cl are allowed to dissociate and the charged polymer expands. Consequently, the solution's viscosity increases. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1341–1345, 1999  相似文献   

12.
This article describes the synthesis and characterization of [polystyrene‐b‐poly(2‐vinylpyridine)]n star‐block copolymers with the poly(2‐vinylpyridine) blocks at the periphery. A two‐step living anionic polymerization method was used. Firstly, oligo(styryl)lithium grafted poly(divinylbenzene) cores were used as multifunctional initiators to initiate living anionic polymerization of styrene in benzene at room temperature. Secondly, vinylpyridine was polymerized at the periphery of these living (polystyrene)n stars in tetrahydrofuran at ?78 °C. The resulting copolymers were characterized using size exclusion chromatography, multiangle laser light scattering, 1H NMR, elemental analysis, and intrinsic viscosity measurements. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3949–3955, 2007  相似文献   

13.
Controlled radical polymerization of 4‐vinylpyridine (4VP) was achieved in a 50 vol % 1‐methyl‐2‐pyrrolidone/water solvent mixture using a 2,2′‐azobis(2,4‐dimethylpentanitrile) initiator and a CuCl2/2,2′‐bipyridine catalyst–ligand complex, for an initial monomer concentration of [M]0 = 2.32–3.24 M and a temperature range of 70–80 °C. Radical polymerization control was achieved at catalyst to initiator molar ratios in the range of 1.3:1 to 1.6:1. First‐order kinetics of the rate of polymerization (with respect to the monomer), linear increase of the number–average degree of polymerization with monomer conversion, and a polydispersity index in the range of 1.29–1.35 were indicative of controlled radical polymerization. The highest number–average degree of polymerization of 247 (number–average molecular weight = 26,000 g/mol) was achieved at a temperature of 70 °C, [M]0 = 3.24 M and a catalyst to initiator molar ratio of 1.6:1. Over the temperature range studied (70–80 °C), the initiator efficiency increased from 50 to 64% whereas the apparent polymerization rate constant increased by about 60%. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5748–5758, 2007  相似文献   

14.
Poly(4‐vinylpyridine) was determined to possess conductivity in the experiment. In order to understand properties of the polymer, a series of 4‐vinylpyridine oligomers were designed. The structures of these oligomers were optimized using density function theory (DFT) at B3LYP/6‐31G(d) level. The energy gaps and thermal stabilities of the oligomers were decreased when the chain lengths were increased. These properties were also decreased owing to the protonation of the pyridine ring. The holes were easily injected into the oligomers in the presence of hydrochloride. The electrons were conducted in the side chain composed of the pyridine rings rather than the main chain owing to the saturation of the main chain. The 13C nuclear magnetic resonance (NMR) spectra and nucleus independent chemical shifts (NICS) of these compounds were calculated at B3LYP/6‐31G(d) level. The chemical shifts of the carbon atoms connected with the nitrogen atoms in the protonated pyridines were moved upfield in comparison with those of the pyridines. The addition of hydrochloride on the pyridine ring in the oligomers led to the increase of the aromaticities, namely the aromaticities of the oligomers were obviously improved when the pyridine rings were protonated.  相似文献   

15.
We report the synthesis of a composite material comprised of poly(4‐vinylpyridine) (P4VP) grafted on multiwall carbon nanotubes (MWCNTs) and the preparation of a nanohybrid via quaternization of the nitrogen atom per monomeric unit of the polymer chains. 4‐Vinylpyridine was polymerized anionically using high vacuum techniques and was reacted with MWCNTs under vacuum to be grafted on the polymer segments. The composite material was soluble in common solvents and the dispersion of the carbon nanotubes was improved after quaternization due to the formation of polymeric ionic liquid (PIL) of the MWCNTs‐g‐[P4VP‐r‐poly(4ViEtPy+Br)] type. The successful synthesis was confirmed with Fourier‐transform infrared and Raman spectroscopies, whereas differential scanning calorimetry was adopted to verify the stability of the polymer's glass transition temperature before and after grafting on the MWCNTs. Moreover, thermogravimetric analysis was used for examining the thermal stability and the PIL formation of the composite. Energy dispersive spectroscopy measurements confirm the precipitation of silver bromide when the MWCNTs‐g‐[P4VP‐r‐poly(4ViEtPy+Br)] is reacted with silver nitrite indicating the successful quaternization and formation of the appropriate PIL. High temperature size exclusion chromatography was used for the determination of the molecular characteristics (average molecular weight by number $\overline M _n$ , polydispersity I) of the homopolymer obtained from the filtration of the composite material. Finally, field‐emission scanning electron microscopy was used to verify the successful grafting of the polymer to the MWCNTs. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
3‐Miktoarm star copolymers, 3μ‐D2V, with two poly(dimethylsiloxane) (PDMS) and one poly(2‐vinylpyridine) (P2VP) arm, were synthesized by using anionic polymerization–high vacuum techniques and (chloromethylphenylethyl)methyl dichlorosilane, heterofunctional linking agent, with two SiCl groups and one CH2Cl group. The synthetic strategy involves the selective reaction of the two ? SiCl groups with PDMSOLi living chains, followed by reaction of the remaining chloromethyl group with P2VPLi. Combined molecular characterization results (size exclusion chromatography, membrane osmometry, and 1H NMR spectroscopy) revealed a high degree of structural and compositional homogeneity. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 614–619, 2006  相似文献   

17.
HU  Na  NI  Zhongbin  CHU  Hong  LIU  Xiaoya  CHEN  Mingqing 《中国化学》2009,27(11):2249-2254
Poly(4‐vinylpyridine) macromonomer (St‐P4VP) with a styryl end group was synthesized by atom transfer radical polymerization (ATRP) of 4‐vinylpyridine using p‐(chloromethyl)styrene (CMSt) as functional initiator, CuCl as catalyst and tris[2‐(dimethylamino)ethyl]amine (Me6TREN) as ligand in 2‐propanol. The structure of St‐P4VP macromonomer was identified by proton nuclear magnetic resonance (1H NMR). The result of gel permeation chromatography (GPC) illustrated that the number‐average molecular weight of St‐P4VP could be controlled by adjusting polymerization conditions. Poly(4‐vinylpyridine) grafted polystyrene microspheres (P4VP‐g‐PSt) were then prepared by dispersion copolymerization of styrene with St‐P4VP macromonomers. The effects of polymerization reaction parameters such as medium polarity, concentration of St‐P4VP macromonomer and polymerization temperature on the sizes and size distribution of P4VP‐g‐PSt microspheres were investigated. The results of transmission electron microscopy (TEM), scanning electron microscopy (SEM) and laser light scattering (LLS) indicated that mono‐dispersed P4VP‐g‐PSt microspheres with average diameters of 100–200 nm could be obtained when the molar ratio of St to St‐P4VP was 0.25:100 in ethanol/water mixed solvents (V/V=80:20) at 60°C. Such kind of graft copolymer microspheres was expected to be applied to many fields such as drug delivery system and protein adsorption/separation system due to their particular structure.  相似文献   

18.
Poly(3‐hexylthiophene)‐b‐poly(4‐vinylpyridine) diblock copolymer was synthesized by RAFT polymerization of 4‐vinyl pyridine using a trithiocarbonate‐terminated poly(3‐hexylthiophene) macro‐RAFT agent. The optoelectronic properties and the morphology of the block copolymer blends with CdSe quantum dots were investigated. UV‐vis and fluorescence experiments were performed to prove the charge transfer between CdSe and poly(3‐hexylthiophene)‐b‐poly(4‐vinylpyridine) diblock copolymer. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
采用共络合法制备了部分季铵化的第五代聚酰胺胺树状聚合物封装的RuRh双金属纳米粒子(DENs)催化剂, 分别利用紫外-可见光谱、光散射分析和透射电镜表征了该树状聚合物封装的RuRh双金属纳米粒子的形成、粒径及其分布. 红外光谱和核磁共振谱分析表明, RuRh双金属DENs催化剂对聚(甲基氢硅氧烷)的硅氢化改性显示了较高的催化活性和良好的区域选择性.  相似文献   

20.
The polymerization of 4‐vinylpyridine was conducted in the presence of a cyclic trithiocarbonate (4,7‐diphenyl‐[1,3]dithiepane‐2‐thione) as a reversible addition–fragmentation transfer (RAFT) polymerization agent, and a multiblock polymer with narrow‐polydispersity blocks was prepared. Two kinds of multiblock copolymers of styrene and 4‐vinylpyridine, that is, (ABA)n multi‐triblock copolymers with polystyrene or poly(4‐vinylpyridine) as the outer blocks, were prepared with multiblock polystyrene or poly(4‐vinylpyridine) as a macro‐RAFT agent, respectively. GPC data for the original polymers and polymers cleaved by amine demonstrated the successful synthesis of amphiphilic multiblock copolymers of styrene and 4‐vinylpyridine via two‐step polymerization. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2617–2623, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号